Exemplo n.º 1
0
    def save(self, rec_file):
        """Pickle the whole `Analyzer` class.

        Parameters
        ----------
        rec_file : str
            Directory path to the file where the `Analyzer` is serialized

        """

        self.nlp = None
        save(self, rec_file)
Exemplo n.º 2
0
    def save(self, rec_file):
        """Saves data corresponding to a meta model instance.

        Parameters
        ----------
        rec_file : str
            Name of the file in `latom.data.metamodels` where the meta model is stored

        """

        d = {'Isp': self.Isp, 'twr': self.twr, 'm_prop': self.m_prop, 'failures': self.failures}
        save(d, self.abs_path(rec_file))
Exemplo n.º 3
0
    def save(self, rec_file):
        """Saves data corresponding to a surrogate model instance.

        Parameters
        ----------
        rec_file : str
            Name of the file in `latom.data.smt` where the surrogate model is stored

        """

        d = {
            'limits': self.limits,
            'x_samp': self.x_samp,
            'm_prop': self.m_prop,
            'failures': self.failures
        }
        save(d, self.abs_path(rec_file))
Exemplo n.º 4
0
    twr = np.hstack((d1['twr'], d2['twr']))
    isp = d1['Isp']

elif np.isclose(direction, 1):  # same thrust/weight ratio bounds and step

    m_prop = np.hstack((d1['m_prop'], d2['m_prop']))
    energy = np.hstack((d1['energy'], d2['energy']))
    failures = np.hstack((d1['failures'], d2['failures']))

    twr = d1['twr']
    isp = np.hstack((d1['Isp'], d2['Isp']))

else:
    raise ValueError('matrices not compatible')

print(f"\nIsp: {isp[0]:.4f}s - {isp[-1]:.4f}s at {(isp[1] - isp[0]):.4f}s step")
print(f"twr: {twr[0]:.4f} - {twr[-1]:.4f} at {(twr[1] - twr[0]):.4f} step")
print(f"Max spacecraft energy: {np.max(energy):.4f} m^2/s^2\n")

if plot == 'mp':
    rs = RespSurf(isp, twr, m_prop.T, 'propellant fraction', nb_lines=50)
    rs.plot()
elif plot == 'en':
    rs = RespSurf(isp, twr, energy.T, 'spacecraft energy', nb_lines=50)
    rs.plot()

if fid is not None:
    d = {'Isp': isp, 'twr': twr, 'm_prop': m_prop, 'energy': energy, 'failures': failures}
    fid = '/'.join([dirname_metamodels, fid])
    save(d, fid)
Exemplo n.º 5
0
    def run_continuation(self, rec_file=None):
        """Iterative solution of all optimal control problems corresponding to the different thrust/weight ratios in
        `twr_list` using a continuation method in which the solution of the problem ``i`` is set as initial guess for
        the problem ``i + 1``. The first solution is computed using the initial guess provided by `TwoDimLLO2HEOGuess`
        class.

        Parameters
        ----------
        rec_file : str or None, optional
            Directory path for the file in which the thrust/weight ratios, propellant masses, specific energies and
            solutions are recorded or ``None``. Default is ``None``

        """

        nlp = None
        params = {
            'ra_heo': self.guess.ht.arrOrb.ra,
            'rp_llo': self.guess.ht.depOrb.rp,
            'vp_hoh': self.guess.ht.transfer.vp,
            'thetaf_pow': self.guess.pow.thetaf
        }

        t0_loop = time()
        for i in range(np.size(self.twr_list)):

            if i == 0:  # first solution
                nlp = self.nlp
            else:  # subsequent solutions
                self.sc.update_twr(self.twr_list[i])
                nlp = TwoDimLLO2ApoNLP(self.body,
                                       self.sc,
                                       self.alt,
                                       None,
                                       None, (-np.pi / 2, np.pi / 2),
                                       None,
                                       self.nlp.method,
                                       self.nlp.nb_seg,
                                       self.nlp.order,
                                       self.nlp.solver,
                                       self.phase_name,
                                       snopt_opts=self.nlp.snopt_opts,
                                       params=params)

            # solve NLP
            print(f"\nIteration {i}\nThrust/weight ratio: {self.sc.twr:.6f}\n")
            t0_iter = time()
            failed = nlp.p.run_driver()
            tf_iter = time()
            nlp.cleanup()
            print(
                f"\nTime to solve the NLP problem: {(tf_iter - t0_iter):.6f} s\n"
            )

            if failed:
                print('\nNLP solution failed! Exiting loop\n')
                break

            # extract and store the NLP solution
            params['tof'], params['states'], params[
                'controls'] = self.get_discretization_phase(
                    nlp.p, nlp.phase_name)
            self.sol_list[self.sol_keys[i]] = self.get_solution_dictionary(
                nlp.p)

            # compute the specific energy of the spacecraft at the end of the powered phase and the total required
            # propellant mass including the final insertion burn
            states_end = params['states'][-1]
            en, m_prop = self.compute_energy_mprop(states_end[0],
                                                   states_end[2],
                                                   states_end[3],
                                                   states_end[-1])

            # store the spacecraft energy and propellant mass
            self.energy_list[i] = en
            self.m_prop_list[i] = m_prop

        tf_loop = time()
        print(
            f"\nTotal time for continuation loop: {(tf_loop - t0_loop):.6f} s\n"
        )

        self.nlp = nlp

        if rec_file is not None:
            d = {
                'twr': self.twr_list,
                'm_prop': self.m_prop_list,
                'energy': self.energy_list,
                'sol': self.sol_list
            }
            save(d, rec_file)
Exemplo n.º 6
0
                m_prop = compute_solutions(moon, isp, twr)
            elif compute_err:
                m_prop = d['m_prop']
            else:
                m_prop = None

            # errors
            if compute_err:
                err_mm = np.fabs(m_prop.flatten() - m_prop_mm.flatten())
                err_lhs = np.fabs(m_prop.flatten() - m_prop_lhs.flatten())
                if m_prop_full is not None:
                    err_full = np.fabs(m_prop.flatten() -
                                       m_prop_full.flatten())
                else:
                    err_full = None
                fid.write(
                    f"\n{'mm':4s}\t{im_mm:20s}\t{np.min(err_mm):.16e}\t{np.max(err_mm):.16e}"
                )
                fid.write(
                    f"\n{'lhs':4s}\t{tm_lhs:20s}\t{np.min(err_lhs):.16e}\t{np.max(err_lhs):.16e}"
                )
                fid.write(
                    f"\n{'full':4s}\t{tm_full:20s}\t{np.min(err_full):.16e}\t{np.max(err_full):.16e}"
                )
            if store:
                d = {'Isp': isp, 'twr': twr, 'm_prop': m_prop}
                save(d, fid_real)

if fid is not None:
    fid.close()
Exemplo n.º 7
0
                nb_samp,
                snopt_opts=snopt_opts,
                rec_file=rec_file,
                t=heo_period,
                rp=heo_rp,
                log_scale=log_scale)
else:
    mm = TwoDimLLO2ApoMetaModel(
        distributed=distributed,
        extrapolate=extrapolate,
        method=interp_method,
        training_data_gradients=training_data_gradients,
        vec_size=vec_size)
    mm.sampling(moon,
                twr,
                isp,
                llo_alt,
                None,
                transcription_method,
                segments,
                order,
                solver,
                nb_samp,
                snopt_opts=snopt_opts,
                rec_file=rec_file,
                t=heo_period,
                rp=heo_rp)

mm.plot()
save(mm, rec_file_obj)