Exemplo n.º 1
0
def load_model_kpn_1f(cfg):
    if cfg.dynamic.frame_size == 128:
        return KPN_1f(color=True,
                      kernel_size=[9],
                      burst_length=cfg.input_N,
                      blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                                alpha=1.0)
    else:
        return KPN_1f_fs64(color=True,
                           kernel_size=[9],
                           burst_length=cfg.input_N,
                           blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                                     alpha=1.0)
Exemplo n.º 2
0
def load_model_kpn(cfg):
    # return KPN_1f_model(color=True,kernel_size=[cfg.kpn_frame_size],burst_length=cfg.input_N,blind_est=True),LossFunc(tensor_grad=~cfg.blind,alpha=1.0)
    return KPN_model(color=True,
                     kernel_size=[cfg.kpn_frame_size],
                     burst_length=cfg.input_N,
                     blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                               recon_l1=cfg.recon_l1)
Exemplo n.º 3
0
def load_model_kpn(cfg, num_frames):
    return KPN_model(color=True,
                     burst_length=num_frames,
                     blind_est=True,
                     kernel_size=[cfg.kpn_frame_size],
                     cascade=cfg.kpn_cascade_output), LossFunc(
                         tensor_grad=~cfg.blind, alpha=1.0)
Exemplo n.º 4
0
def load_model_kpn_1f_cls(cfg):
    if cfg.dynamic.frame_size in [64, 128]:
        return KPN_1f_cls(color=True,
                          kernel_size=[cfg.kpn_1f_frame_size],
                          burst_length=cfg.input_N,
                          blind_est=True,
                          filter_thresh=cfg.kpn_filter_onehot,
                          cascade=cfg.kpn_cascade_output,
                          frame_size=cfg.dynamic.frame_size), LossFunc(
                              tensor_grad=~cfg.blind, alpha=1.0)
    elif cfg.dynamic.frame_size == 32:
        return KPN_1f_cls_fs32(color=True,
                               kernel_size=[cfg.kpn_1f_frame_size],
                               burst_length=cfg.input_N,
                               blind_est=True,
                               filter_thresh=cfg.kpn_filter_onehot,
                               cascade=cfg.kpn_cascade_output), LossFunc(
                                   tensor_grad=~cfg.blind, alpha=1.0)
    else:
        raise KeyError(f"Uknown frame size [{cfg.dynamic.frame_size}]")
Exemplo n.º 5
0
def load_model_kpn_1f(cfg):
    if cfg.dynamic.frame_size == 128:
        return KPN_1f(color=True,
                      kernel_size=[cfg.kpn_1f_frame_size],
                      burst_length=cfg.input_N,
                      blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                                alpha=1.0)
    elif cfg.dynamic.frame_size == 64:
        return KPN_1f_fs64(color=True,
                           kernel_size=[cfg.kpn_1f_frame_size],
                           burst_length=cfg.input_N,
                           blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                                     alpha=1.0)
    elif cfg.dynamic.frame_size == 32:
        return KPN_1f_fs32(color=True,
                           kernel_size=[cfg.kpn_1f_frame_size],
                           burst_length=cfg.input_N,
                           blind_est=True), LossFunc(tensor_grad=~cfg.blind,
                                                     alpha=1.0)
    else:
        raise KeyError("Uknown frame size [{cfg.dynamic.frame_size}]")
Exemplo n.º 6
0
def get_kpn_model(cfg):
    model = KPN_model(color=True,
                      burst_length=cfg.nframes,
                      blind_est=True,
                      kernel_size=[5],
                      cascade=False)
    model = model.to(cfg.gpuid, non_blocking=True)
    loss_fxn_base = LossFunc(tensor_grad=True, alpha=1.0)
    loss_fxn_base = loss_fxn_base.to(cfg.gpuid, non_blocking=True)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    # -- create closure for loss --
    def wrap_loss_fxn(denoised, gt_img, denoised_frames, step):
        gt_img_nmlz = gt_img - 0.5  #gt_img.mean()
        loss_basic, loss_anneal = loss_fxn_base(denoised_frames, denoised,
                                                gt_img_nmlz, step)
        return loss_basic + loss_anneal

    loss_fxn = wrap_loss_fxn

    # -- create empty scheduler --
    def scheduler_fxn(epoch):
        pass

    # -- wrap call function for interface --
    forward_fxn = model.forward

    def wrap_forward(dyn_noisy, noise_info):
        noisy = dyn_noisy - 0.5  #dyn_noisy.mean()
        kpn_stack = rearrange(noisy, 't b c h w -> b t c h w')
        kpn_cat = rearrange(noisy, 't b c h w -> b (t c) h w')
        denoised, denoised_ave, filters = forward_fxn(kpn_cat, kpn_stack)
        denoised_ave += 0.5
        return denoised_ave, denoised

    model.forward = wrap_forward

    return model, loss_fxn, optimizer, scheduler_fxn
Exemplo n.º 7
0
def load_model_kpn(cfg):
    return KPN_model(color=True,
                     burst_length=cfg.input_N,
                     blind_est=True,
                     kernel_size=[cfg.kpn_frame_size]), LossFunc()
Exemplo n.º 8
0
def load_model_stn(cfg):
    img_shape = (cfg.dynamic.frame_size, cfg.dynamic.frame_size, 3)
    return STNBurst(img_shape), LossFunc(tensor_grad=~cfg.blind)
Exemplo n.º 9
0
def load_model_kpn(cfg):
    return KPN_model(color=True, burst_length=cfg.input_N,
                     blind_est=True), LossFunc()