def fusion2(self,
                conv5_feature,
                conv4_feature,
                upconv3,
                name="fusion2"):  #(1/16, 1/8, 1)
        with tf.variable_scope(name) as scope:
            output_channel = np.shape(upconv3)[3]

            conv5_feature = conv_bn_relu(
                conv5_feature,
                [3, 3, np.shape(conv5_feature)[3], output_channel], 1)
            conv5_feature = UpSampling2D((16, 16))(conv5_feature)

            conv4_feature = conv_bn_relu(
                conv4_feature,
                [3, 3, np.shape(conv4_feature)[3], output_channel], 1)
            conv4_feature = UpSampling2D((8, 8))(conv4_feature)

            upconv3 = conv_bn_relu(
                upconv3, [3, 3, np.shape(upconv3)[3], output_channel], 1)

            output = tf.add(conv5_feature, conv4_feature)
            output = tf.add(output, upconv3)
            output = conv_bn_relu(output,
                                  [3, 3, output_channel, output_channel], 1)
            return output
Exemplo n.º 2
0
 def generation_stage(self, inputs):
     D = np.shape(inputs)[3]
     x = conv_bn_relu(inputs, [1, 1, D, D // 2], 1)
     x = conv_bn_relu(x, [3, 3, D // 2, D // 2], 1)
     x = conv_bn_relu(x, [1, 1, D // 2, D], 1)
     outputs = tf.add(inputs, x)
     return outputs
 def generation_stage(self, inputs, name):
     with tf.variable_scope(name) as scope:
         D = np.shape(inputs)[3]
         x = conv_bn_relu(inputs, [1, 1, D, D // 2], 1, "c1")
         x = conv_bn_relu(x, [3, 3, D // 2, D // 2], 1, "c2")
         x = conv_bn_relu(x, [1, 1, D // 2, D], 1, "c3")
         outputs = tf.add(inputs, x)
         return outputs
Exemplo n.º 4
0
 def Conv_Pool_Conv(self, inputs):
     D = np.shape(inputs)[3]
     outputs = conv_bn_relu(inputs, [3, 3, D, D], stride=1)
     outputs = tf.nn.max_pool(outputs,
                              ksize=[1, 2, 2, 1],
                              strides=[1, 2, 2, 1],
                              padding='SAME',
                              name='pooling')
     outputs = conv_bn_relu(outputs, [3, 3, D, D // 4], stride=1)
     return outputs
Exemplo n.º 5
0
    def Dense_decoder_feature_generation(self, inputs):
        branch1 = self.Conv_Pool_Conv(inputs)
        branch2 = self.Conv_Pool_Conv(inputs)
        branch3 = self.Conv_Pool_Conv(inputs)
        branch4 = self.Conv_Pool_Conv(inputs)

        features = tf.concat([branch1, branch2, branch3, branch4], axis=3)
        D = np.shape(inputs)[3]
        features = conv_bn_relu(features, [3, 3, D, D], stride=1)

        for i in range(4):
            features = self.generation_stage(features)
        features = UpSampling2D((2, 2))(features)
        features = conv_bn_relu(features, [3, 3, D, D], 1)
        return features
Exemplo n.º 6
0
    def fusion1(self, conv5_feature, upconv4):  #(1/16, 1/8)
        output_channel = np.shape(upconv4)[3]

        conv5_feature = conv_bn_relu(
            conv5_feature,
            [3, 3, np.shape(conv5_feature)[3], output_channel], 1)
        conv5_feature = UpSampling2D((2, 2))(conv5_feature)

        upconv4 = conv_bn_relu(
            upconv4, [3, 3, np.shape(upconv4)[3], output_channel], 1)

        output = tf.add(conv5_feature, upconv4)
        output = conv_bn_relu(output, [3, 3, output_channel, output_channel],
                              1)
        return output
    def fusion1(self, conv5_feature, upconv4, name="fusion1"):  #(1/16, 1/8)
        with tf.variable_scope(name) as scope:
            output_channel = np.shape(upconv4)[3]

            conv5_feature = conv_bn_relu(
                conv5_feature,
                [3, 3, np.shape(conv5_feature)[3], output_channel], 1)
            conv5_feature = UpSampling2D((2, 2))(conv5_feature)

            upconv4 = conv_bn_relu(
                upconv4, [3, 3, np.shape(upconv4)[3], output_channel], 1)

            output = tf.add(conv5_feature, upconv4)
            output = conv_bn_relu(output,
                                  [3, 3, output_channel, output_channel], 1)
            return output
    def Dense_decoder_feature_generation(self, inputs, name):
        with tf.variable_scope(name) as scope:
            branch1 = self.Conv_Pool_Conv(inputs, "b1")
            branch2 = self.Conv_Pool_Conv(inputs, "b2")
            branch3 = self.Conv_Pool_Conv(inputs, "b3")
            branch4 = self.Conv_Pool_Conv(inputs, "b4")

            features = tf.concat([branch1, branch2, branch3, branch4], axis=3)
            D = np.shape(inputs)[3]
            features = conv_bn_relu(features, [3, 3, D, D], stride=1)

            for i in range(4):
                features = self.generation_stage(features, "stage" + str(i))
            features = UpSampling2D((2, 2))(features)
            features = conv_bn_relu(features, [3, 3, D, D], 1)
            return features
Exemplo n.º 9
0
    def build(self, x, class_num, channel, wd, train=True):
        self.conv1_1 = _conv_layer(x, [3, 3, channel, 64], 'conv1_1')
        self.conv1_2 = _conv_layer(self.conv1_1, [3, 3, 64, 64], 'conv1_2')
        self.pooling1 = _pooling_layer(self.conv1_2, 'pooling1')

        self.conv2_1 = _conv_layer(self.pooling1, [3, 3, 64, 128], 'conv2_1')
        self.conv2_2 = _conv_layer(self.conv2_1, [3, 3, 128, 128], 'conv2_2')
        self.pooling2 = _pooling_layer(self.conv2_2, 'pooling2')

        self.conv3_1 = _conv_layer(self.pooling2, [3, 3, 128, 256], 'conv3_1')
        self.conv3_2 = _conv_layer(self.conv3_1, [3, 3, 256, 256], 'conv3_2')
        self.conv3_3 = _conv_layer(self.conv3_2, [3, 3, 256, 256], 'conv3_3')
        self.pooling3 = _pooling_layer(self.conv3_3, 'pooling3')

        self.conv4_1 = _conv_layer(self.pooling3, [3, 3, 256, 512], 'conv4_1')
        self.conv4_2 = _conv_layer(self.conv4_1, [3, 3, 512, 512], 'conv4_2')
        self.conv4_3 = _conv_layer(self.conv4_2, [3, 3, 512, 512], 'conv4_3')
        self.pooling4 = _pooling_layer(self.conv4_3, 'pooling4')

        self.conv5_1 = _conv_layer(self.pooling4, [3, 3, 512, 512], 'conv5_1')
        self.conv5_2 = _conv_layer(self.conv5_1, [3, 3, 512, 512], 'conv5_2')
        self.conv5_3 = _conv_layer(self.conv5_2, [3, 3, 512, 512], 'conv5_3')
        self.pooling5 = _pooling_layer(self.conv5_3, 'pooling5')

        self.conv6 = _conv_layer(self.pooling5, [7, 7, 512, 4096], 'conv6')
        if train:
            self.conv6 = tf.nn.dropout(self.conv6, 0.5)
        self.conv7 = _conv_layer(self.conv6, [1, 1, 4096, 4096], 'conv7')
        if train:
            self.conv7 = tf.nn.dropout(self.conv7, 0.5)
        self.score_fr = _conv_layer_without_relu(self.conv7, [1, 1, 4096, 64],
                                                 'conv7_1x1conv',
                                                 wd=wd)

        self.pooling4_conv = _conv_layer_without_relu(self.pooling4,
                                                      [1, 1, 512, 64],
                                                      'pool4_1x1conv',
                                                      wd=wd)

        self.pooling3_conv = _conv_layer_without_relu(self.pooling3,
                                                      [1, 1, 256, 64],
                                                      'pool3_1x1conv',
                                                      wd=wd)

        self.upconv5 = UpSampling2D((2, 2))(self.score_fr)  #1/16
        self.upconv4 = UpSampling2D((2, 2))(self.pooling4_conv)  #1/8
        self.upconv3 = UpSampling2D((8, 8))(self.pooling3_conv)  #1
        self.conv5_feature = self.Dense_decoder_feature_generation(
            self.upconv5)

        self.upconv4 = self.fusion1(self.conv5_feature, self.upconv4)  #1/8
        self.conv4_feature = self.Dense_decoder_feature_generation(
            self.upconv4)

        self.upconv3 = self.fusion2(self.conv5_feature, self.conv4_feature,
                                    self.upconv3)
        self.conv3_feature = self.Dense_decoder_feature_generation(
            self.upconv3)

        self.upscore = conv_bn_relu(
            self.conv3_feature,
            [3, 3, np.shape(self.conv3_feature)[3], 64], 1)
        self.upscore = conv_bn_relu(self.upscore, [3, 3, 64, class_num], 1)

        return self.upscore
    def build(self, x, class_num, channel, wd, train=True):

        self.conv1_1 = _conv_layer(x, [3, 3, channel, 64], 'conv1_1')
        self.conv1_2 = _conv_layer(self.conv1_1, [3, 3, 64, 64], 'conv1_2')
        self.pooling1 = _pooling_layer(self.conv1_2, 'pooling1')

        self.conv2_1 = _conv_layer(self.pooling1, [3, 3, 64, 128], 'conv2_1')
        self.conv2_2 = _conv_layer(self.conv2_1, [3, 3, 128, 128], 'conv2_2')
        self.pooling2 = _pooling_layer(self.conv2_2, 'pooling2')

        # self.inception_block2_1 = _inception_layer(self.pooling1, in_c=64, out_1=32, out_21=32, out_22=32, out_31=32, out_32=64, out_33=64)
        # self.inception_block2_2 = _inception_layer(self.inception_block2_1, in_c=128, out_1=32, out_21=32, out_22=32, out_31=32,
        #                                            out_32=64, out_33=64)
        # self.pooling2 = _pooling_layer(self.inception_block2_2, 'pooling2')

        # self.conv3_1 = _conv_layer(self.pooling2, [3, 3, 128, 256], 'conv3_1')
        # self.conv3_2 = _conv_layer(self.conv3_1, [3, 3, 256, 256], 'conv3_2')
        # self.conv3_3 = _conv_layer(self.conv3_2, [3, 3, 256, 256], 'conv3_3')
        # self.pooling3 = _pooling_layer(self.conv3_3, 'pooling3')

        self.inception_block3_1 = _inception_layer(
            'inception3_1',
            self.pooling2,
            in_c=128,
            out_1=64,
            out_21=64,
            out_22=64,
            out_31=64,
            out_32=128,
            out_33=64,
            out_41=64,
            out_42=128,
            out_43=64)  # output channel 256
        self.inception_block3_2 = _inception_layer(
            'inception3_2',
            self.inception_block3_1,
            in_c=256,
            out_1=64,
            out_21=64,
            out_22=64,
            out_31=64,
            out_32=128,
            out_33=64,
            out_41=64,
            out_42=128,
            out_43=64)  # output channel 256
        self.inception_block3_3 = _inception_layer(
            'inception3_3',
            self.inception_block3_2,
            in_c=256,
            out_1=64,
            out_21=64,
            out_22=64,
            out_31=64,
            out_32=128,
            out_33=64,
            out_41=64,
            out_42=128,
            out_43=64)  # output channel 256
        self.pooling3 = _pooling_layer(self.inception_block3_3, 'pooling3')

        self.inception_block4_1 = _inception_layer('inception4_1',
                                                   self.pooling3,
                                                   in_c=256,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.inception_block4_2 = _inception_layer('inception4_2',
                                                   self.inception_block4_1,
                                                   in_c=512,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.inception_block4_3 = _inception_layer('inception4_3',
                                                   self.inception_block4_2,
                                                   in_c=512,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.pooling4 = _pooling_layer(self.inception_block4_3, 'pooling4')

        self.inception_block5_1 = _inception_layer('inception5_1',
                                                   self.pooling4,
                                                   in_c=512,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.inception_block5_2 = _inception_layer('inception5_2',
                                                   self.inception_block5_1,
                                                   in_c=512,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.inception_block5_3 = _inception_layer('inception5_3',
                                                   self.inception_block5_2,
                                                   in_c=512,
                                                   out_1=128,
                                                   out_21=128,
                                                   out_22=128,
                                                   out_31=128,
                                                   out_32=256,
                                                   out_33=128,
                                                   out_41=128,
                                                   out_42=256,
                                                   out_43=128)  # output 512
        self.pooling5 = _pooling_layer(self.inception_block5_3, 'pooling5')

        self.conv6 = _conv_layer(self.pooling5, [7, 7, 512, 4096], 'conv6')
        if train:
            self.conv6 = tf.nn.dropout(self.conv6, 0.5)
        self.conv7 = _conv_layer(self.conv6, [1, 1, 4096, 4096], 'conv7')
        if train:
            self.conv7 = tf.nn.dropout(self.conv7, 0.5)
        self.score_fr = _conv_layer_without_relu(self.conv7, [1, 1, 4096, 64],
                                                 'conv7_1x1conv',
                                                 wd=wd)

        self.pooling4_conv = _conv_layer_without_relu(self.pooling4,
                                                      [1, 1, 512, 64],
                                                      'pool4_1x1conv',
                                                      wd=wd)

        self.pooling3_conv = _conv_layer_without_relu(self.pooling3,
                                                      [1, 1, 256, 64],
                                                      'pool3_1x1conv',
                                                      wd=wd)

        self.upconv5 = UpSampling2D((2, 2))(self.score_fr)  #1/16
        self.upconv4 = UpSampling2D((2, 2))(self.pooling4_conv)  #1/8
        self.upconv3 = UpSampling2D((8, 8))(self.pooling3_conv)  #1
        self.conv5_feature = self.Dense_decoder_feature_generation(
            self.upconv5, name="gen1")

        self.upconv4 = self.fusion1(self.conv5_feature, self.upconv4)  #1/8
        self.conv4_feature = self.Dense_decoder_feature_generation(
            self.upconv4, name="gen2")

        self.upconv3 = self.fusion2(self.conv5_feature, self.conv4_feature,
                                    self.upconv3)
        self.conv3_feature = self.Dense_decoder_feature_generation(
            self.upconv3, name="gen3")

        self.upscore = conv_bn_relu(
            self.conv3_feature,
            [3, 3, np.shape(self.conv3_feature)[3], 64],
            1,
            name="final1")
        self.upscore = conv_bn_relu(self.upscore, [3, 3, 64, class_num],
                                    1,
                                    name="final2")

        return self.upscore