Exemplo n.º 1
0
def Encoder(img_size, in_channel, conv_channel, filter_size, latent_dim,
            dense_size, bn):
    inner_conv_channel = conv_channel // 2
    if img_size % 4 != 0:
        print("WARNING: image size mod 4 != 0, may produce bug.")
    # total input number of the input of the last conv layer, new image size = old / 2 / 2
    flatten_img_size = inner_conv_channel * img_size / 4 * img_size / 4

    # explain: first two layer's padding = 2, because we set W/S = W/S + floor((-F+2P)/S+1), S=2,F=5,so P=2
    if VERBOSE:
        print(img_size, in_channel, conv_channel, filter_size, latent_dim, bn)
    model = nn.Sequential(
        layers.ConvLayer(in_channel,
                         conv_channel,
                         filter_size,
                         stride=2,
                         padding=2,
                         bn=bn),
        layers.ConvLayer(conv_channel,
                         inner_conv_channel,
                         filter_size,
                         stride=2,
                         padding=2,
                         bn=bn),
        layers.ConvLayer(inner_conv_channel,
                         inner_conv_channel,
                         filter_size,
                         stride=1,
                         padding=2,
                         bn=bn), layers.Flatten(),
        layers.Dense(flatten_img_size, dense_size),
        layers.Dense(dense_size, latent_dim))
    model = model.to(device=device, dtype=dtype)
    model = torch.nn.DataParallel(model, device_ids=GPU_IDs)
    return model
Exemplo n.º 2
0
def create_network(available_actions_count):
    # Create the input variables
    s1 = T.tensor4("State")
    a = T.vector("Action", dtype="int32")
    q2 = T.vector("Q2")
    r = T.vector("Reward")
    isterminal = T.vector("IsTerminal", dtype="int8")

    # Create the input layer of the network.
    inputLayer = s1
    new_w = resolution[0]
    new_h = resolution[1]
    # Add 2 convolutional layers with ReLu activation
    # filter_shape = [num_filters, num_input_feature_maps, filter_height, filter_width]
    input_shape_1 = [batch_size, 1, resolution[0], resolution[1]]
    filter_shape_1 = [8, 1, 6, 6]
    layer1 = layers.ConvLayer(input=inputLayer, filter_shape=filter_shape_1, input_shape=input_shape_1, pool_size=None)
    new_w = (new_w - filter_shape_1[2] + 1)/1  # No pooling
    new_h = (new_h - filter_shape_1[3] + 1)/1  # No pooling
    input_shape_2 = [batch_size, 8, new_w, new_h]
    filter_shape_2 = [8, 8, 3, 3]
    layer2 = layers.ConvLayer(input=layer1.out, filter_shape=filter_shape_2, input_shape=input_shape_2, pool_size=None)
    # Add a single fully-connected layer.
    new_w = (new_w - filter_shape_2[2] + 1)/1  # No pooling
    new_h = (new_h - filter_shape_2[3] + 1)/1  # No pooling
    layer3 = layers.FCLayer(input=layer2.out.flatten(2), fan_in=filter_shape_2[0]*new_w*new_h, num_hidden=128)

    # Add the output layer (also fully-connected).
    # (no nonlinearity as it is for approximating an arbitrary real function)
    layer4 = layers.FCLayer(input=layer3.out, fan_in=128, num_hidden=available_actions_count, activation=None)
    layer4_out = layer4.out

    q = layer4_out

    # target differs from q only for the selected action. The following means:
    # target_Q(s,a) = r + gamma * max Q(s2,_) if isterminal else r
    target_q = T.set_subtensor(q[T.arange(q.shape[0]), a], r + discount_factor * (1 - isterminal) * q2)
    loss = squared_error(q, target_q).mean()

    # Update the parameters according to the computed gradient using RMSProp.
    params = layer4.params + layer3.params + layer2.params + layer1.params
    updates = rmsprop(loss, params, learning_rate)

    # Compile the theano functions
    print("Compiling the network ...")
    function_learn = theano.function([s1, q2, a, r, isterminal], loss, updates=updates, name="learn_fn")
    function_get_q_values = theano.function([s1], q, name="eval_fn")
    function_get_best_action = theano.function([s1], T.argmax(q, axis=1), name="test_fn")
    print("Network compiled.")

    def simple_get_best_action(state):
        state = np.expand_dims(state, axis=0)
        state = np.expand_dims(state, axis=0)
        state = np.repeat(state, batch_size, axis=0)
        return function_get_best_action(state)

    # Returns Theano objects for the net and functions.
    return params, function_learn, function_get_q_values, simple_get_best_action
Exemplo n.º 3
0
def Decoder(s_dim, z_dim, img_size, img_channel, conv_channel, filter_size,
            dense_size, bn):
    # TODO
    # essentially the mirror version of Encoder
    inner_conv_channel = conv_channel // 2
    back_img_size = img_size // 4
    flatten_img_size = inner_conv_channel * back_img_size * back_img_size

    input_dim = s_dim + z_dim

    pad = int(
        np.floor(filter_size /
                 2))  # chose pad this way to fullfill floor((-F+2P)/1+1)==0

    model = nn.Sequential(
        layers.Dense(input_dim, dense_size),
        layers.Dense(dense_size,
                     inner_conv_channel * back_img_size * back_img_size),
        layers.Reshape((-1, inner_conv_channel, back_img_size, back_img_size)),
        layers.ConvLayer(inner_conv_channel,
                         inner_conv_channel,
                         filter_size,
                         stride=1,
                         padding=pad,
                         bn=bn,
                         upsampling=True),
        layers.ConvLayer(inner_conv_channel,
                         conv_channel,
                         filter_size,
                         stride=1,
                         padding=pad,
                         bn=bn,
                         upsampling=True),
        layers.ConvLayer(conv_channel,
                         img_channel,
                         filter_size,
                         stride=1,
                         padding=pad,
                         bn=bn,
                         upsampling=False),
    )
    model = model.to(device=device, dtype=dtype)
    model = torch.nn.DataParallel(model, device_ids=GPU_IDs)
    return model
Exemplo n.º 4
0
def CNN():
    net = n.NeuralNetwork([
        l.InputLayer(height=28, width=28),
        l.ConvLayer(10, kernel=3, init_val=o.randSc, activator=o.sigmoid),
        l.MaxLayer(pool=2),
        l.FCLayer(height=10, init_val=o.randSc, activator=o.softmax)
    ], o.crossentropy)
    optimizer = o.SGD(0.1)
    num_epochs = 2
    batch_size = 50
    num_class = 2
    return net, optimizer, num_epochs, batch_size, num_class
Exemplo n.º 5
0
 def __init__(self, in_channels=3):
     super(Encoder, self).__init__()
     layers = [nn.InstanceNorm2d(in_channels, affine=True)]
     layers.append(torch.nn.ReflectionPad2d(15))
     layer_spec = [[3, 32, 3, 1], [32, 32, 3, 2], [32, 64, 3, 2],
                   [64, 128, 3, 2], [128, 256, 3, 2]]
     pad = True
     for spec in layer_spec:
         in_channels, out_channels, kernel_size, stride = spec
         layers.append(
             L.ConvLayer(in_channels=in_channels,
                         out_channels=out_channels,
                         kernel_size=kernel_size,
                         stride=stride,
                         pad='VALID'))
     self.layers = nn.Sequential(*layers)
Exemplo n.º 6
0
def Loaded_nn(name='save(cnn(3_5_2)(0_1_2_8))'):

    batch_of_weights = load_weights(name)

    ccn_pack, fcl_pack = batch_of_weights
    cnn_b, cnn_w = ccn_pack
    fcl_b, fcl_w = fcl_pack

    cnn_w = map(float, np.delete(cnn_w.split('\n'), -1))
    cnn_b = map(float, np.delete(cnn_b.split('\n'), -1))

    fcl_w = map(float, np.delete(fcl_w.split(', '), -1))
    fcl_b = map(float, np.delete(fcl_b.split(', '), -1))
    '''
        fcl_w = map(float,np.delete(fcl_w.split('\n'),-1))
        fcl_b = map(float,np.delete(fcl_b.split('\n'),-1))
        '''

    weights = [cnn_w, cnn_b, fcl_w, fcl_b]

    con_layer = l.ConvLayer(3,
                            kernel=5,
                            init_val=o.randSc,
                            activator=o.sigmoid)
    fc_layer = l.FCLayer(height=10, init_val=o.randSc, activator=o.softmax)

    net = NeuralNetwork([
        l.InputLayer(height=28, width=28), con_layer,
        l.MaxLayer(pool=2), fc_layer
    ], o.crossentropy)

    con_layer.w = np.reshape(weights[0], (np.shape(con_layer.w)))
    con_layer.b = np.reshape(weights[1], (np.shape(con_layer.b)))
    fc_layer.w = np.reshape(weights[2], (np.shape(fc_layer.w)))
    fc_layer.b = np.reshape(weights[3], (np.shape(fc_layer.b)))

    return net
Exemplo n.º 7
0
def CPRS(network_list):
    #print(train_data[0].shape)

    #Xdim = ( Xnch, Xrow, Xcol )
    ds1 = (2, 2)
    #st1 = ( 2, 2 )

    input = {}
    weight_dim = {}
    output = {}
    output_num = {}

    #入力パラメータ
    #input_dim = train_data[0].shape
    input_dim = (params_dict["InputChannel"], params_dict["InputWidth"],
                 params_dict["InputHeight"])

    #weight_dim[0] = ( 16, input_dim[0], 5, 5 )
    #output_num[0] = 100
    #output_num[1] = 10
    reshape_flag = True
    #affine_cnt = 0

    layers = []
    gamma = {}
    beta = {}
    #for i in range( len( network_list ) ):
    for i in range(params_dict['LayerNum']):
        if network_list[i] == "BatchNorm":
            input[i] = output[i - 1]
            output[i] = input[i]

            gamma[i] = theano.shared(
                np.ones(input[i], dtype=theano.config.floatX))
            beta[i] = theano.shared(
                np.zeros(input[i], dtype=theano.config.floatX))

            layers.append(convnet.BatchNormLayer(input[i], gamma[i], beta[i]))

        if network_list[i] == "Convolution":
            input[i] = input_dim if i == 0 else output[i - 1]
            weight_dim[i] = (params_dict['Channel' + str(i + 1)], input[i][0],
                             params_dict['Width' + str(i + 1)],
                             params_dict['Height' + str(i + 1)])
            output[i] = (weight_dim[i][0], input[i][1] - weight_dim[i][2] + 1,
                         input[i][2] - weight_dim[i][3] + 1)
            layers.append(convnet.ConvLayer(input[i], weight_dim[i]))

        #elif network_list[i] == "Pool":
        elif network_list[i] == "Pooling":
            input[i] = output[i - 1]

            if input[i][1] % 2 == 0:
                #input[i][1] = input[i][1] + 1
                #input[i][2] = input[i][2] + 1
                #print(input[i][1])
                #print(input[i][2])
                output[i] = (input[i][0], input[i][1] / 2, input[i][2] / 2)
            else:
                output[i] = (input[i][0], (input[i][1] / 2) + 1,
                             (input[i][2] / 2) + 1)

            layers.append(
                convnet.PoolLayer(input[i], output[i], ds1, bias=True))

        elif network_list[i] == "Relu":
            input[i] = output[i - 1]
            output[i] = input[i]
            layers.append(convnet.ReluLayer())

        elif network_list[i] == "Affine":
            if i == 0:
                input[i] = (params_dict["InputChannel"],
                            params_dict["InputWidth"],
                            params_dict["InputHeight"])
            else:
                input[i] = output[i - 1]
            if reshape_flag == True: input[i] = int(np.prod(input[i]))

            #output[i] = output_num[affine_cnt]
            output[i] = params_dict['Output' + str(i + 1)]

            layers.append(
                convnet.AffineLayer(input[i], output[i], T4toMat=reshape_flag))
            reshape_flag = False
            #affine_cnt += 1

        elif network_list[i] == "Softmax":
            layers.append(convnet.SoftmaxLayer())

    cnn = CNN(layers)
    return cnn
Exemplo n.º 8
0
    def __init__(self, rng, batch_size, input):

        conv1_1 = layers.ConvLayer(rng,
                                   input=input,
                                   image_shape=(batch_size, 3, 480, 320),
                                   filter_shape=(32, 3, 3, 3),
                                   bias=True,
                                   padding='valid')

        conv1_2 = layers.ConvLayer(rng,
                                   input=K.spatial_2d_padding(conv1_1.output),
                                   image_shape=(batch_size, 32, 480, 320),
                                   filter_shape=(64, 32, 3, 3),
                                   padding='valid')

        maxp1 = layers.MaxPooling(input=K.spatial_2d_padding(conv1_2.output),
                                  poolsize=(2, 2))

        conv2_1 = layers.ConvLayer(rng,
                                   input=maxp1.output,
                                   image_shape=(batch_size, 64, 240, 160),
                                   filter_shape=(64, 64, 3, 3),
                                   padding='valid')

        conv2_2 = layers.ConvLayer(rng,
                                   input=K.spatial_2d_padding(conv2_1.output),
                                   image_shape=(batch_size, 64, 240, 160),
                                   filter_shape=(64, 64, 3, 3),
                                   padding='valid')

        #         maxp2 = layers.MaxPooling(
        #             input=K.spatial_2d_padding(conv2_2.output),
        #             poolsize=(2, 2)
        #         )
        #
        #         conv3_1 = layers.ConvLayer(
        #             rng,
        #             input=maxp2.output,
        #             image_shape=(batch_size, 10, 120, 80),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='valid'
        #         )
        #
        #         conv3_2 = layers.ConvLayer(
        #             rng,
        #             input=K.spatial_2d_padding(conv3_1.output),
        #             image_shape=(batch_size, 10, 120, 80),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='valid'
        #         )
        #
        #         maxp3 = layers.MaxPooling(
        #             input=conv3_2.output,
        #             poolsize=(2, 2)
        #         )
        #
        #         conv4_1 = layers.ConvLayer(
        #             rng,
        #             input=maxp3.output,
        #             image_shape=(batch_size, 10, 60, 40),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         conv4_2 = layers.ConvLayer(
        #             rng,
        #             input=conv4_1.output,
        #             image_shape=(batch_size, 10, 60, 40),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         maxp4 = layers.MaxPooling(
        #             input=conv4_2.output,
        #             poolsize=(2, 2)
        #         )
        #
        #         conv5_1 = layers.ConvLayer(
        #             rng,
        #             input=maxp4.output,
        #             image_shape=(batch_size, 10, 30, 20),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         conv5_2 = layers.ConvLayer(
        #             rng,
        #             input=conv5_1.output,
        #             image_shape=(batch_size, 10, 30, 20),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         maxp5 = layers.MaxPooling(
        #             input=conv5_2.output,
        #             poolsize=(2, 2)
        #         )
        #
        #         flat1_input = maxp5.output.flatten(2)
        #         flat1_shape = 10*15*10
        #
        #         flat1 = layers.HiddenLayer(
        #             rng=rng,
        #             input=flat1_input,
        #             n_in=flat1_shape,
        #             n_out=flat1_shape,
        #             activation=T.nnet.relu
        #         )
        #
        #         flat2 = layers.HiddenLayer(
        #             rng=rng,
        #             input=flat1.output,
        #             n_in=flat1_shape,
        #             n_out=flat1_shape,
        #             activation=T.nnet.relu
        #         )
        #
        #         remax5_input = flat2.output.reshape((batch_size,10,15,10))
        #
        #         remax5 = layers.ReverseMaxPooling(
        #             input=remax5_input,
        #             mask=maxp5.mask,
        #             poolsize=(2, 2)
        #         )
        #
        #         deconv5_1 = layers.DeConvLayer(
        #             rng,
        #             #input=remax5.output,
        #             input=conv5_2.output,
        #             W=conv5_2.W,
        #             image_shape=(batch_size, 10, 30, 20),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         deconv5_2 = layers.DeConvLayer(
        #             rng,
        #             input=deconv5_1.output,
        #             W=conv5_1.W,
        #             image_shape=(batch_size, 10, 30, 20),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         remax4 = layers.ReverseMaxPooling(
        #             input=deconv5_2.output,
        #             mask=maxp4.mask,
        #             poolsize=(2, 2)
        #         )
        #
        #         deconv4_1 = layers.DeConvLayer(
        #             rng,
        #             input=remax4.output,
        #             W=conv4_2.W,
        #             image_shape=(batch_size, 10, 60, 40),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         deconv4_2 = layers.DeConvLayer(
        #             rng,
        #             input=deconv4_1.output,
        #             W=conv4_1.W,
        #             image_shape=(batch_size, 10, 60, 40),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         remax3 = layers.ReverseMaxPooling(
        #             input=deconv4_2.output,
        #             mask=maxp3.mask,
        #             poolsize=(2, 2)
        #         )
        #
        #         deconv3_1 = layers.DeConvLayer(
        #             rng,
        #             #input=remax3.output,
        #             input=conv3_2.output,
        #             W=conv3_2.W,
        #             image_shape=(batch_size, 10, 118, 78),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         deconv3_2 = layers.DeConvLayer(
        #             rng,
        #             input=K.spatial_2d_padding(deconv3_1.output),
        #             W=conv3_1.W,
        #             image_shape=(batch_size, 10, 120, 80),
        #             filter_shape=(10, 10, 3, 3),
        #             padding='same'
        #         )
        #
        #         remax2 = layers.ReverseMaxPooling(
        #             input=deconv3_2.output,
        #             mask=maxp2.mask,
        #             poolsize=(2, 2)
        #         )
        #
        deconv2_1 = layers.DeConvLayer(
            rng,
            #input=remax2.output,
            input=K.spatial_2d_padding(conv2_2.output),
            W=conv2_2.W,
            image_shape=(batch_size, 64, 240, 160),
            filter_shape=(64, 64, 3, 3),
            padding='same')

        deconv2_2 = layers.DeConvLayer(rng,
                                       input=deconv2_1.output,
                                       W=conv2_1.W,
                                       image_shape=(batch_size, 64, 240, 160),
                                       filter_shape=(64, 64, 3, 3),
                                       padding='same')

        remax1 = layers.ReverseMaxPooling(input=deconv2_2.output,
                                          mask=maxp1.mask,
                                          poolsize=(2, 2))

        deconv1_1 = layers.DeConvLayer(
            rng,
            input=remax1.output,
            #input=K.spatial_2d_padding(conv1_2.output),
            W=conv1_2.W,
            image_shape=(batch_size, 64, 480, 320),
            filter_shape=(32, 64, 3, 3),
            padding='same',
        )

        deconv1_2 = layers.ConvLayer(rng,
                                     input=deconv1_1.output,
                                     image_shape=(batch_size, 32, 480, 320),
                                     filter_shape=(1, 32, 3, 3),
                                     bias=True,
                                     padding='same',
                                     activation=T.nnet.sigmoid)

        self.y_pred = T.clip(deconv1_2.output, 0.001, 0.999)
        #         self.params=conv1_1.params+conv1_2.params+conv2_1.params+conv2_2.params+\
        #             conv3_1.params+conv3_2.params+conv4_1.params+conv4_2.params+conv5_1.params+conv5_2.params+\
        #             deconv5_1.params+deconv5_2.params+deconv4_1.params+deconv4_2.params+deconv3_1.params+\
        #             deconv3_2.params+deconv2_1.params+deconv2_2.params+deconv1_1.params+deconv1_2.params
        self.params = conv1_1.params + conv1_2.params + conv2_1.params + conv2_2.params + deconv1_2.params
        self.input = input
from activation_functions import Sigmoid, Tanh, Linear
from loss_functions import SoftMaxCrossEntropyLoss

from mnist_data import x_train_2D as X
from mnist_data import y_train_reformatted as y
from mnist_data import x_test_2D as x_test
from mnist_data import y_test_reformatted as y_test

# ===================================================================================

nn = NN.NN(loss_func=SoftMaxCrossEntropyLoss())

convLayer = layers.ConvLayer(
    n_channels=9,
    kernel_size=9,
    weight_init='glorot',
    activation_func=Tanh(),
    flatten=True,
    dropout=0.8,
)
# pool = layers.PoolingLayer(pool_size=7, flatten=True)
dense = layers.DenseLayer(10, Linear(), weight_initialisation='glorot')

nn.add_layer(convLayer)
# nn.add_layer(pool)
nn.add_layer(dense)

optimizer = optimizers.MomentumSGD(learning_rate=0.01, momentum=0.90)
trainer = NN.Trainer(nn, optimizer)

# statistic
batch_size = 50
Exemplo n.º 10
0
 def __init__(self):
     self.convlayer = ly.ConvLayer()
     self.relu = ly.ReLU()