Exemplo n.º 1
0
def build_model(input_data_tensor, input_label_tensor):
    num_classes = config["num_classes"]
    images = tf.image.resize_images(input_data_tensor, [224, 224])
    logits = vgg.build(images, n_classes=num_classes, training=True)
    probs = tf.nn.softmax(logits)
    loss = L.loss(logits, tf.one_hot(input_label_tensor, num_classes))
    error_top5 = L.topK_error(probs, input_label_tensor, K=5)
    error_top1 = L.topK_error(probs, input_label_tensor, K=1)

    # you must return a dictionary with at least the "loss" as a key
    return dict(loss=loss,
                logits=logits,
                error_top5=error_top5,
                error_top1=error_top1)
Exemplo n.º 2
0
def build_model(input_data_tensor, input_label_tensor):
    num_classes = config["num_classes"]
    weight_decay = config["weight_decay"]
    images = tf.image.resize_images(input_data_tensor, [224, 224])
    logits = vgg.build(images, n_classes=num_classes, training=True)
    probs = tf.nn.softmax(logits)
    loss_classify = L.loss(logits, tf.one_hot(input_label_tensor, num_classes))
    loss_weight_decay = tf.reduce_sum(tf.stack([tf.nn.l2_loss(i) for i in tf.get_collection('variables')]))
    loss = loss_classify + weight_decay*loss_weight_decay
    error_top5 = L.topK_error(probs, input_label_tensor, K=5)
    error_top1 = L.topK_error(probs, input_label_tensor, K=1)

    # you must return a dictionary with loss as a key, other variables
    return dict(loss=loss,
                probs=probs,
                logits=logits,
                error_top5=error_top5,
                error_top1=error_top1)