Exemplo n.º 1
0
    def decoder(self, inputs):
        decoder_inputs, encoder_encodings, encoder_masks = inputs
        if K.dtype(decoder_inputs) != 'int32':
            decoder_inputs = K.cast(decoder_inputs, 'int32')

        decoder_masks = K.equal(decoder_inputs, 0)
        # Embeddings
        embeddings = K.gather(self.embeddings, decoder_inputs)
        embeddings *= self._model_dim**0.5  # Scale
        # Position Encodings
        position_encodings = PositionEncoding(self._model_dim)(embeddings)
        # Embedings + Postion-encodings
        encodings = embeddings + position_encodings
        # Dropout
        encodings = K.dropout(encodings, self._dropout_rate)

        for i in range(self._decoder_stack):
            # Masked-Multi-head-Attention
            masked_attention = MultiHeadAttention(self._n_heads,
                                                  self._model_dim //
                                                  self._n_heads,
                                                  future=True)
            masked_attention_input = [
                encodings, encodings, encodings, decoder_masks
            ]
            masked_attention_out = masked_attention(masked_attention_input)
            # Add & Norm
            masked_attention_out += encodings
            masked_attention_out = LayerNormalization()(masked_attention_out)

            # Multi-head-Attention
            attention = MultiHeadAttention(self._n_heads,
                                           self._model_dim // self._n_heads)
            attention_input = [
                masked_attention_out, encoder_encodings, encoder_encodings,
                encoder_masks
            ]
            attention_out = attention(attention_input)
            # Add & Norm
            attention_out += masked_attention_out
            attention_out = LayerNormalization()(attention_out)

            # Feed-Forward
            ff = PositionWiseFeedForward(self._model_dim,
                                         self._feed_forward_size)
            ff_out = ff(attention_out)
            # Add & Norm
            ff_out += attention_out
            encodings = LayerNormalization()(ff_out)

        # Pre-Softmax 与 Embeddings 共享参数
        linear_projection = K.dot(encodings, K.transpose(self.embeddings))
        outputs = K.softmax(linear_projection)
        return outputs
Exemplo n.º 2
0
    def __init__(self, vocab_size, emb_dim, num_heads, num_fields,
                 num_neighbors, padding_val):
        super(Model, self).__init__()
        # Text embedding layer for neighbors
        self.text_emb = tf.keras.layers.Embedding(input_dim=vocab_size,
                                                  output_dim=emb_dim,
                                                  mask_zero=True)
        # Embedding Layer for candidate positions
        self.cand_pos_emb = tf.keras.layers.Dense(emb_dim)
        # Embedding layer for relative positions of neighbors.
        self.neigh_pos_emb = pos_embedding(dim=emb_dim)
        # Field ID Embedding Layer
        self.field_emb = tf.keras.layers.Embedding(input_dim=num_fields,
                                                   output_dim=emb_dim,
                                                   mask_zero=False)
        # Self Attention layer
        self.num_heads = num_heads
        self.mha = MultiHeadAttention(2 * emb_dim, self.num_heads)
        # Linear Projection Layer for Neighborhood Encoding+Candidate Pos Embedding
        self.projection = tf.keras.layers.Dense(emb_dim)
        # Max pooling layer for neighborhood embedding
        self.max_pool = tf.keras.layers.MaxPool1D(strides=num_neighbors,
                                                  padding='same')
        # Cosine Similarity
        self.cosine_sim = tf.keras.losses.CosineSimilarity(axis=1,
                                                           reduction='none')

        self.padding_val = padding_val
Exemplo n.º 3
0
def build_model():
    """
    Build and compile the model.
    """
    inputs = Input(shape=(MAX_LEN, 20), name='Input')
    masking = Masking(mask_value=0.0,
                      input_shape=(MAX_LEN, 20),
                      name='Masking')(inputs)
    hidden = Bidirectional(LSTM(512,
                                use_bias=True,
                                dropout=0.5,
                                return_sequences=True),
                           name='Bidirectional-LSTM')(masking)
    hidden = MultiHeadAttention(head_num=32,
                                activation='relu',
                                use_bias=True,
                                return_multi_attention=False,
                                name='Multi-Head-Attention')(hidden)
    hidden = Dropout(0.2, name='Dropout_1')(hidden)
    hidden = Attention(name='Attention')(hidden)
    prediction = Dense(1, activation='sigmoid', name='Output')(hidden)
    model = Model(inputs=inputs, outputs=prediction)
    adam = Adam(lr=0.001,
                beta_1=0.9,
                beta_2=0.999,
                epsilon=None,
                decay=0.0,
                amsgrad=False)  #best
    model.compile(loss='binary_crossentropy',
                  optimizer=adam,
                  metrics=['accuracy'])
    return model
Exemplo n.º 4
0
    def encoder(self, inputs):
        if K.dtype(inputs) != 'int32':
            inputs = K.cast(inputs, 'int32')

        masks = K.equal(inputs, 0)
        # Embeddings
        embeddings = K.gather(self.embeddings, inputs)
        embeddings *= self._model_dim**0.5  # Scale
        # Position Encodings
        position_encodings = PositionEncoding(self._model_dim)(embeddings)
        # Embedings + Postion-encodings
        encodings = embeddings + position_encodings
        # Dropout
        encodings = K.dropout(encodings, self._dropout_rate)

        for i in range(self._encoder_stack):
            # Multi-head-Attention
            attention = MultiHeadAttention(self._n_heads,
                                           self._model_dim // self._n_heads)
            attention_input = [encodings, encodings, encodings, masks]
            attention_out = attention(attention_input)
            # Add & Norm
            attention_out += encodings
            attention_out = LayerNormalization()(attention_out)
            # Feed-Forward
            ff = PositionWiseFeedForward(self._model_dim,
                                         self._feed_forward_size)
            ff_out = ff(attention_out)
            # Add & Norm
            ff_out += attention_out
            encodings = LayerNormalization()(ff_out)

        return encodings, masks
Exemplo n.º 5
0
 def __init__(self,
              h=8,
              d_model=512,
              d_ff=2048,
              p_dropout=0.1,
              max_len=128):
     super().__init__()
     self.self_attn = MultiHeadAttention(h, d_model)
     self.dropout1 = Dropout(p_dropout)
     self.norm1 = LayerNormalization()
     self.src_tgt_attn = MultiHeadAttention(h, d_model)
     self.dropout2 = Dropout(p_dropout)
     self.norm2 = LayerNormalization()
     self.ff = FFN(d_model, d_ff)
     self.dropout3 = Dropout(p_dropout)
     self.norm3 = LayerNormalization()
Exemplo n.º 6
0
 def __init__(self,
              h=8,
              d_model=512,
              d_ff=2048,
              p_dropout=0.1,
              max_len=128,
              device='cpu'):
     super().__init__()
     self.self_attn = MultiHeadAttention(h, d_model)
     self.dropout1 = nn.Dropout(p_dropout)
     self.norm1 = nn.LayerNorm(d_model)
     self.src_tgt_attn = MultiHeadAttention(h, d_model)
     self.dropout2 = nn.Dropout(p_dropout)
     self.norm2 = nn.LayerNorm(d_model)
     self.ff = FFN(d_model, d_ff)
     self.dropout3 = nn.Dropout(p_dropout)
     self.norm3 = nn.LayerNorm(d_model)
Exemplo n.º 7
0
 def build(self, input_shape):
     self.embeddings = self.add_weight(shape=(self._vocab_size,
                                              self._model_dim),
                                       initializer='glorot_uniform',
                                       trainable=True,
                                       name="embeddings")
     self.EncoderPositionEncoding = PositionEncoding(self._model_dim)
     self.EncoderMultiHeadAttetions = [
         MultiHeadAttention(self._n_heads, self._model_dim // self._n_heads)
         for _ in range(self._encoder_stack)
     ]
     self.EncoderLayerNorms0 = [
         LayerNormalization() for _ in range(self._encoder_stack)
     ]
     self.EncoderPositionWiseFeedForwards = [
         PositionWiseFeedForward(self._model_dim, self._feed_forward_size)
         for _ in range(self._encoder_stack)
     ]
     self.EncoderLayerNorms1 = [
         LayerNormalization() for _ in range(self._encoder_stack)
     ]
     self.DecoderPositionEncoding = PositionEncoding(self._model_dim)
     self.DecoderMultiHeadAttetions0 = [
         MultiHeadAttention(self._n_heads,
                            self._model_dim // self._n_heads,
                            future=True) for _ in range(self._decoder_stack)
     ]
     self.DecoderLayerNorms0 = [
         LayerNormalization() for _ in range(self._decoder_stack)
     ]
     self.DecoderMultiHeadAttetions1 = [
         MultiHeadAttention(self._n_heads, self._model_dim // self._n_heads)
         for _ in range(self._decoder_stack)
     ]
     self.DecoderLayerNorms1 = [
         LayerNormalization() for _ in range(self._decoder_stack)
     ]
     self.DecoderPositionWiseFeedForwards = [
         PositionWiseFeedForward(self._model_dim, self._feed_forward_size)
         for _ in range(self._decoder_stack)
     ]
     self.DecoderLayerNorms2 = [
         LayerNormalization() for _ in range(self._decoder_stack)
     ]
     super(Transformer, self).build(input_shape)
Exemplo n.º 8
0
 def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
     super(EncoderLayer, self).__init__()
     self.slf_attn = MultiHeadAttention(n_head,
                                        d_model,
                                        d_k,
                                        d_v,
                                        dropout=dropout)
     self.pos_ffn = PositionwiseFeedForward(d_model,
                                            d_inner,
                                            dropout=dropout)
Exemplo n.º 9
0
 def __init__(self,
              input_dim,
              num_heads,
              feed_forward_hidden=512,
              **kwargs):
     super().__init__(**kwargs)
     self.mha = MultiHeadAttention(n_heads=num_heads,
                                   d_model=input_dim,
                                   name='MHA')
     self.ff1 = tf.keras.layers.Dense(feed_forward_hidden, name='ff1')
     self.ff2 = tf.keras.layers.Dense(input_dim, name='ff2')
Exemplo n.º 10
0
	def build(self, input_shape):
		self.MHA_sublayer = ResidualBlock_BN(
			SelfAttention(
					MultiHeadAttention(n_heads = self.n_heads, embed_dim = input_shape[2])# input_shape[2] = embed_dim = 128	
			),
			tf.keras.layers.BatchNormalization()
		)
		self.FF_sublayer = ResidualBlock_BN(
			tf.keras.models.Sequential([
					tf.keras.layers.Dense(self.FF_hidden, activation = self.activation),
					tf.keras.layers.Dense(input_shape[2])
			]),
			tf.keras.layers.BatchNormalization()
		)
		super().build(input_shape)
Exemplo n.º 11
0
 def __init__(self,
              input_dim,
              num_heads,
              feed_forward_hidden=512,
              **kwargs):
     super().__init__(**kwargs)
     self.mha = MultiHeadAttention(n_heads=num_heads,
                                   d_model=input_dim,
                                   name='MHA')
     self.bn1 = tf.keras.layers.BatchNormalization(name='bn1',
                                                   trainable=True)
     self.bn2 = tf.keras.layers.BatchNormalization(name='bn2',
                                                   trainable=True)
     self.ff1 = tf.keras.layers.Dense(feed_forward_hidden, name='ff1')
     self.ff2 = tf.keras.layers.Dense(input_dim, name='ff2')
Exemplo n.º 12
0
    def __init__(self, embed_dim=128, n_heads=8, clip=10., **kwargs):
        super().__init__(**kwargs)

        self.Wk1 = nn.Linear(embed_dim, embed_dim, bias=False)
        self.Wv = nn.Linear(embed_dim, embed_dim, bias=False)
        self.Wk2 = nn.Linear(embed_dim, embed_dim, bias=False)
        self.Wq_fixed = nn.Linear(embed_dim, embed_dim, bias=False)
        self.Wout = nn.Linear(embed_dim, embed_dim, bias=False)
        self.Wq_step = nn.Linear(embed_dim + 1, embed_dim, bias=False)

        self.MHA = MultiHeadAttention(n_heads=n_heads,
                                      embed_dim=embed_dim,
                                      need_W=False)
        self.SHA = DotProductAttention(clip=clip,
                                       return_logits=True,
                                       head_depth=embed_dim)
        # SHA ==> Single Head Attention, because this layer n_heads = 1 which means no need to spilt heads
        self.env = Env
Exemplo n.º 13
0
    def __init__(self, n_heads=8, FF_hidden=512, embed_dim=128, **kwargs):
        super().__init__(**kwargs)
        self.n_heads = n_heads
        self.FF_hidden = FF_hidden
        self.BN1 = Normalization(embed_dim, normalization='batch')
        self.BN2 = Normalization(embed_dim, normalization='batch')

        self.MHA_sublayer = ResidualBlock_BN(
            SelfAttention(
                MultiHeadAttention(n_heads=self.n_heads,
                                   embed_dim=embed_dim,
                                   need_W=True)), self.BN1)

        self.FF_sublayer = ResidualBlock_BN(
            nn.Sequential(nn.Linear(embed_dim, FF_hidden,
                                    bias=True), nn.ReLU(),
                          nn.Linear(FF_hidden, embed_dim, bias=True)),
            self.BN2)
Exemplo n.º 14
0
    def __init__(self, model_config, name=''):
        super(ModelAttention, self).__init__(name=name)

        print(model_config)
        d_fc = model_config['d_fc']
        d_model = model_config['d_model']
        num_heads = model_config['num_heads']
        attn_score_type = model_config['attn_score_type']
        dropout_rate = model_config.get('dropout_rate', 0.0)

        #self.proj_1d = tf.keras.layers.Dense(d_model, activation='linear')

        act = tf.nn.relu
        self.variant_encoding = tf.keras.models.Sequential(
            [tf.keras.layers.Dense(w, activation=act) for w in [d_fc]])

        self.neighbor_encoding = tf.keras.models.Sequential(
            [tf.keras.layers.Dense(w, activation=act) for w in [d_fc]])

        if model_config['pairwise_type'] != 'none':
            self.pairwise_encoding = tf.keras.models.Sequential(
                [tf.keras.layers.Dense(w, activation=act) for w in [d_fc]])

        #num_species
        #125,exclude fish
        self.evol_encoder = EvolEncoder2(
            num_species=200,
            weighting_schema=model_config['weighting_schema'],
            pairwise_type=model_config['pairwise_type'])

        self.logit_layer = tf.keras.layers.Dense(1)

        self.mha = MultiHeadAttention(
            d_model,
            num_heads,
            attn_score_type=attn_score_type,
            #use_pairwise=model_config['pairwise_type'] != 'none'
            use_pairwise=True)
        self.gru = tf.keras.layers.GRUCell(d_model,
                                           activation='tanh',
                                           recurrent_dropout=dropout_rate,
                                           dropout=dropout_rate)
Exemplo n.º 15
0
 def build(self, input_shape):
     self.MHA_sublayer = ResidualBlock_BN(
         SelfAttention(
             MultiHeadAttention(
                 n_heads=self.n_heads,
                 embed_dim=input_shape[2],
                 need_W=True)  # input_shape[2] = embed_dim = 128	
         ),
         self.BN1)
     self.FF_sublayer = ResidualBlock_BN(
         tf.keras.models.Sequential([
             # tf.keras.layers.Dense(self.FF_hidden, use_bias = True, activation = self.activation, kernel_initializer = init, bias_initializer = init),
             # tf.keras.layers.Dense(input_shape[2], use_bias = True, kernel_initializer = init, bias_initializer = init)
             tf.keras.layers.Dense(self.FF_hidden,
                                   use_bias=True,
                                   activation=self.activation),
             tf.keras.layers.Dense(input_shape[2], use_bias=True)
         ]),
         self.BN2)
     super().build(input_shape)
Exemplo n.º 16
0
def build_attention():
    """
    Build the model architecture for attention output
    """
    inputs = Input(shape=(MAX_LEN, 20), name='Input')
    masking = Masking(mask_value=0.0,
                      input_shape=(MAX_LEN, 20),
                      name='Masking')(inputs)
    hidden = Bidirectional(LSTM(512,
                                use_bias=True,
                                dropout=0.5,
                                return_sequences=True),
                           name='Bidirectional-LSTM')(masking)
    hidden = MultiHeadAttention(head_num=32,
                                activation='relu',
                                use_bias=True,
                                return_multi_attention=False,
                                name='Multi-Head-Attention')(hidden)
    hidden = Dropout(0.2, name='Dropout_1')(hidden)
    hidden = Attention(return_attention=True, name='Attention')(hidden)
    model = Model(inputs=inputs, outputs=hidden)
    return model
Exemplo n.º 17
0
    def __init__(self,
                 vocabs,
                 word_dim,
                 pos_dim,
                 hidden_size,
                 rnn_layers,
                 dropout_rate,
                 device,
                 bidirectional=True,
                 use_crf=False,
                 embedding=None):
        super(LabelAttention, self).__init__()

        word2id, tag2id, label2id = vocabs  # vocab == wor2id, tag2id, label2id

        output_size = hidden_size * 2 if bidirectional else hidden_size  # because bidirectional

        # word embedding set
        self.word_embeddings = nn.Embedding(len(word2id),
                                            word_dim)  # dimension == 100

        # parameter embedding is preprocessing(use pretrained or not use pretrained)
        # parameter copy to local variable
        if embedding is not None:
            self.word_embeddings.weight.data.copy_(torch.from_numpy(embedding))

        # preprocessing not embedding tag and label
        self.tag_embeddings = nn.Embedding(len(tag2id),
                                           pos_dim)  # tag embedding

        # this is no labelAttention difference
        self.label_embeddings = nn.Embedding(len(label2id), output_size)

        # lstm set
        # word_dim + pos_dom == 150
        self.lstm1 = nn.LSTM(word_dim + pos_dim,
                             hidden_size,
                             1,
                             batch_first=True,
                             bidirectional=bidirectional,
                             dropout=dropout_rate)

        self.label_attn1 = MultiHeadAttention(input_size=output_size,
                                              hidden_size=hidden_size,
                                              n_head=8,
                                              dropout=dropout_rate,
                                              device=device)
        self.lstm2 = nn.LSTM(hidden_size,
                             hidden_size,
                             1,
                             batch_first=True,
                             bidirectional=bidirectional,
                             dropout=dropout_rate)

        self.label_attn2 = MultiHeadAttention(input_size=output_size,
                                              hidden_size=hidden_size,
                                              n_head=1,
                                              dropout=dropout_rate,
                                              device=device)

        # bidirectional is ouput size * 2
        # no bidirectional is ouput size * 1

        # output size
        self.linear = nn.Linear(output_size, len(label2id))

        # drop out set
        self.dropout_rate = dropout_rate

        # using crf
        self.use_crf = use_crf
        if use_crf:
            self.crf = CRF(len(label2id),
                           batch_first=True)  # parameter: label index

        # loss function: cross entroyp
        self.cross_entropy = nn.CrossEntropyLoss(reduction='none')

        # label total size
        self.label_size = len(label2id)
        self.device = device
Exemplo n.º 18
0
	def build(self, input_shape):
		context_shape, nodes_shape = input_shape
		self.prep_attention_layer = MultiHeadAttention(n_heads = self.n_heads, embed_dim = nodes_shape[2])
		self.final_attention_layer = DotProductAttention(return_logits = True, clip = self.clip)
		super().build(input_shape)
Exemplo n.º 19
0
def get_age_model(DATA):

    feed_forward_size = 2048
    max_seq_len = 150
    model_dim = 256 + 256 + 64 + 32 + 8 + 16

    input_creative_id = Input(shape=(max_seq_len, ), name='creative_id')
    x1 = Embedding(
        input_dim=NUM_creative_id + 1,
        output_dim=256,
        weights=[DATA['creative_id_emb']],
        trainable=args.not_train_embedding,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_creative_id)
    # encodings = PositionEncoding(model_dim)(x1)
    # encodings = Add()([embeddings, encodings])

    input_ad_id = Input(shape=(max_seq_len, ), name='ad_id')
    x2 = Embedding(
        input_dim=NUM_ad_id + 1,
        output_dim=256,
        weights=[DATA['ad_id_emb']],
        trainable=args.not_train_embedding,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_ad_id)

    input_product_id = Input(shape=(max_seq_len, ), name='product_id')
    x3 = Embedding(
        input_dim=NUM_product_id + 1,
        output_dim=32,
        weights=[DATA['product_id_emb']],
        trainable=args.not_train_embedding,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_product_id)

    input_advertiser_id = Input(shape=(max_seq_len, ), name='advertiser_id')
    x4 = Embedding(
        input_dim=NUM_advertiser_id + 1,
        output_dim=64,
        weights=[DATA['advertiser_id_emb']],
        trainable=args.not_train_embedding,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_advertiser_id)

    input_industry = Input(shape=(max_seq_len, ), name='industry')
    x5 = Embedding(
        input_dim=NUM_industry + 1,
        output_dim=16,
        weights=[DATA['industry_emb']],
        trainable=True,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_industry)

    input_product_category = Input(shape=(max_seq_len, ),
                                   name='product_category')
    x6 = Embedding(
        input_dim=NUM_product_category + 1,
        output_dim=8,
        weights=[DATA['product_category_emb']],
        trainable=True,
        #    trainable=False,
        input_length=150,
        mask_zero=True)(input_product_category)

    # (bs, 100, 128*2)
    encodings = layers.Concatenate(axis=2)([x1, x2, x3, x4, x5, x6])
    # (bs, 100)
    masks = tf.equal(input_creative_id, 0)

    # (bs, 100, 128*2)
    attention_out = MultiHeadAttention(
        8, 79)([encodings, encodings, encodings, masks])

    # Add & Norm
    attention_out += encodings
    attention_out = LayerNormalization()(attention_out)
    # Feed-Forward
    ff = PositionWiseFeedForward(model_dim, feed_forward_size)
    ff_out = ff(attention_out)
    # Add & Norm
    # ff_out (bs, 100, 128),但是attention_out是(bs,100,256)
    ff_out += attention_out
    encodings = LayerNormalization()(ff_out)
    encodings = GlobalMaxPooling1D()(encodings)
    encodings = Dropout(0.2)(encodings)

    # output_gender = Dense(2, activation='softmax', name='gender')(encodings)
    output_age = Dense(10, activation='softmax', name='age')(encodings)

    model = Model(inputs=[
        input_creative_id, input_ad_id, input_product_id, input_advertiser_id,
        input_industry, input_product_category
    ],
                  outputs=[output_age])

    model.compile(
        optimizer=optimizers.Adam(2.5e-4),
        loss={
            # 'gender': losses.CategoricalCrossentropy(from_logits=False),
            'age': losses.CategoricalCrossentropy(from_logits=False)
        },
        # loss_weights=[0.4, 0.6],
        metrics=['accuracy'])
    return model
Exemplo n.º 20
0
 def setUp(self):
     self.attn = MultiHeadAttention(128, 4)
Exemplo n.º 21
0
    def __init__(self, embedding, vocab_size, heads, embedding_size,
                 encoder_size, conv_num=4, attn_num=1, drop_out=0.2):
        super(MwAN, self).__init__()
        self.drop_out=drop_out
        self.conv_num = conv_num
        self.attn_num = attn_num
        self.c = copy.deepcopy

        # self.embedding = nn.Embedding(vocab_size + 1, embedding_dim=embedding_size)
        self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(embedding), freeze=False)
        self.position_encoding = PositionalEncoding(embedding_size, self.drop_out, max_len=500)

        # projection
        self.proj_a = nn.Linear(embedding_size, encoder_size)
        self.proj_p = nn.Linear(embedding_size, encoder_size)
        self.proj_q = nn.Linear(embedding_size, encoder_size)

        # depthwise separable convolution
        self.sep_conv = DepthwiseSeparableConv(encoder_size, encoder_size, k=5, dim=1)
        self.conv_block = Conv_block(Convsublayer(
            encoder_size, self.c(self.sep_conv), self.drop_out), N=2)
        # encoder using self-attention
        self.attn = MultiHeadAttention(heads, encoder_size, self.drop_out, projection=False)
        self.ffn = PointwiseFeedForward(encoder_size, encoder_size * 4)
        self.encoder = Encoder(EncoderSublayer(
            encoder_size, self.c(self.attn), self.c(self.ffn), self.drop_out), N=3)
        self.a_proj = nn.Linear(encoder_size, embedding_size)

        self.a_attention = nn.Linear(embedding_size, 1, bias=False)
        # Concat Attention
        self.Wc1 = nn.Linear(encoder_size, encoder_size, bias=False)
        self.Wc2 = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vc = nn.Linear(encoder_size, 1, bias=False)
        # Bilinear Attention
        self.Wb = nn.Linear(encoder_size, encoder_size, bias=False)
        # Dot Attention :
        self.Wd = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vd = nn.Linear(encoder_size, 1, bias=False)
        # Minus Attention :
        self.Wm = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vm = nn.Linear(encoder_size, 1, bias=False)
        # dot attention between query
        self.Ws = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vs = nn.Linear(encoder_size, 1, bias=False)

        # qanet
        self.Wqa1 = nn.Linear(encoder_size, 1, bias=False)
        self.Wqa2 = nn.Linear(encoder_size, 1, bias=False)
        self.Wqa3 = nn.Linear(encoder_size, encoder_size, bias=False)

        # modeling layer
        # add highway
        self.aggWH = nn.Linear(8 * encoder_size, 8 * encoder_size)
        self.aggWT = nn.Linear(8 * encoder_size, 8 * encoder_size)
        self.agg_linear = nn.Linear(8 * encoder_size, encoder_size * 2)
        self.agg_sep_conv = DepthwiseSeparableConv(encoder_size * 8, encoder_size * 8, k=5, dim=1)
        self.agg_conv_block = Conv_block(Convsublayer(
            encoder_size * 8, self.c(self.agg_sep_conv), self.drop_out), N=2)
        # encoder using self-attention
        self.agg_attn = MultiHeadAttention(heads, encoder_size * 8, self.drop_out, projection=False)
        self.agg_ffn = PointwiseFeedForward(encoder_size * 8, encoder_size * 4)
        self.agg_encoder = Encoder(EncoderSublayer(
            encoder_size * 8, self.c(self.agg_attn), self.c(self.agg_ffn), self.drop_out), N=4)
        """
        prediction layer
        """
        self.Wq = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vq = nn.Linear(encoder_size, 1, bias=False)
        self.Wp1 = nn.Linear(encoder_size * 8, encoder_size, bias=False)
        self.Wp2 = nn.Linear(encoder_size, encoder_size, bias=False)
        self.vp = nn.Linear(encoder_size, 1, bias=False)
        self.prediction = nn.Linear(encoder_size * 8, embedding_size, bias=False)
        self.initiation()