Exemplo n.º 1
0
 def testInvalidMax(self):
     try:
         max_shape =  (1,2,3,2,0)
         determineBlockShape( max_shape, 1000 )
     except AssertionError:
         pass
     except Exception as e:
         assert False, "Wrong type of exception.  Expected AssertionError, but got {}".format( e )
     else:
         assert False, "Expected assertion in determineBlockShape() due to invalid inputs"
Exemplo n.º 2
0
    def setupOutputs(self):
        # We assume that channel the last axis
        assert self.FeatureImage.meta.getAxisKeys()[-1] == 'c'
        assert self.LabelImage.meta.getAxisKeys()[-1] == 'c'
        assert self.LabelImage.meta.shape[-1] == 1
        
        # For now, we assume that the two input images have the same shape (except channel)
        # This constraint could be relaxed in the future if necessary
        assert self.FeatureImage.meta.shape[:-1] == self.LabelImage.meta.shape[:-1],\
            "FeatureImage and LabelImage shapes do not match: {} vs {}"\
            "".format( self.FeatureImage.meta.shape, self.LabelImage.meta.shape )
    
        self.LabelAndFeatureMatrix.meta.shape = (1,)
        self.LabelAndFeatureMatrix.meta.dtype = object
        
        num_feature_channels = self.FeatureImage.meta.shape[-1]
        if num_feature_channels != self.LabelAndFeatureMatrix.meta.num_feature_channels:
            self.LabelAndFeatureMatrix.meta.num_feature_channels = num_feature_channels
            self.LabelAndFeatureMatrix.setDirty()

        self.ProgressSignal.meta.shape = (1,)
        self.ProgressSignal.meta.dtype = object
        self.ProgressSignal.setValue( self.progressSignal )

        # Auto-choose a blockshape
        tagged_shape = self.LabelImage.meta.getTaggedShape()
        if 't' in tagged_shape:
            # A block should never span multiple time slices.
            # For txy volumes, that could lead to lots of extra features being computed.
            tagged_shape['t'] = 1
        blockshape = determineBlockShape( tagged_shape.values(), OpFeatureMatrixCache.MAX_BLOCK_PIXELS )

        # Don't span more than 256 px along any axis
        blockshape = tuple(min(x, 256) for x in blockshape)
        self._init_blocks(self.LabelImage.meta.shape, blockshape)
Exemplo n.º 3
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel

        num_channels = 1
        tagged_shape = outputSlot.meta.getTaggedShape()
        
        # Generally, we don't want to split requests across channels.
        if 'c' in tagged_shape.keys():
            num_channels = tagged_shape['c']
            channel_index = tagged_shape.keys().index('c')
            input_shape = input_shape[:channel_index] + input_shape[channel_index+1:]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the channel dimension.
                num_channels = ideal_blockshape[channel_index]
                ideal_blockshape = ideal_blockshape[:channel_index] + ideal_blockshape[channel_index+1:]

        max_blockshape = input_shape
        available_ram = Memory.getAvailableRamComputation()
        
        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2*outputSlot.meta.dtype().nbytes*num_channels + 4
            warnings.warn( "Unknown per-pixel RAM requirement.  Making a guess." )

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info("Estimated RAM usage per pixel is {} * safety factor ({})"
                    .format( Memory.format(ram_usage_per_requested_pixel), safety_factor ) )
        ram_usage_per_requested_pixel *= safety_factor
        
        if ideal_blockshape is None:
            blockshape = determineBlockShape( input_shape, available_ram/(self._num_threads*ram_usage_per_requested_pixel) )
            if 'c' in outputSlot.meta.getAxisKeys():
                blockshape = blockshape[:channel_index] + (num_channels,) + blockshape[channel_index:]
            warnings.warn( "Chose an arbitrary request blockshape {}".format( blockshape ) )
        else:
            logger.info("determining blockshape assuming available_ram is {}"
                        ", split between {} threads"
                        .format(Memory.format(available_ram), self._num_threads))
            
            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            blockshape = determine_optimal_request_blockshape( max_blockshape,
                                                               ideal_blockshape,
                                                               ram_usage_per_requested_pixel, 
                                                               self._num_threads, 
                                                               available_ram )
            if 'c' in outputSlot.meta.getAxisKeys():
                blockshape = blockshape[:channel_index] + (num_channels,) + blockshape[channel_index:]
            logger.info( "Chose blockshape: {}".format( blockshape ) )
            fmt = Memory.format(ram_usage_per_requested_pixel *
                                numpy.prod(blockshape[:-1]))
            logger.info("Estimated RAM usage per block is {}".format(fmt))

        return blockshape
Exemplo n.º 4
0
    def setupOutputs(self):
        shape, dtype, axiskeys = self._default_accessor.shape, self._default_accessor.dtype, self._default_accessor.axiskeys
        
        try:
            no_extents_checking = bool(int(os.getenv("LAZYFLOW_NO_DVID_EXTENTS", 0)))
        except ValueError:
            raise RuntimeError("Didn't understand value for environment variable "\
                               "LAZYFLOW_NO_DVID_EXTENTS: '{}'.  Please use either 0 or 1."
                               .format(os.getenv("LAZYFLOW_NO_DVID_EXTENTS")))

        if no_extents_checking or (None in shape):
            # In headless mode, we allow the users to request regions outside the currently valid regions of the image.
            # For now, the easiest way to allow that is to simply hard-code DVID volumes to have a really large (1M cubed) shape.
            logger.info("Using absurdly large DVID volume extents, to allow out-of-bounds requests.")
            tagged_shape = collections.OrderedDict( zip(axiskeys, shape) )
            for k,v in tagged_shape.items():
                if k in 'xyz':
                    tagged_shape[k] = int(1e6)
            shape = tuple(tagged_shape.values())
        
        num_channels = shape[-1]
        self.Output.meta.shape = shape
        self.Output.meta.dtype = dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags( axiskeys ) # FIXME: Also copy resolution, etc.
        
        # To avoid requesting extremely large blocks, limit each request to 500MB each.
        # Note that this isn't a hard max: halos, etc. may increase this somewhat.
        max_pixels = 2**29 / self.Output.meta.dtype().nbytes
        max_blockshape = determineBlockShape( self.Output.meta.shape, max_pixels )
        self.Output.meta.max_blockshape = max_blockshape
        self.Output.meta.ideal_blockshape = max_blockshape
        
        # For every request, we probably need room RAM for the array and for the http buffer
        # (and hopefully nothing more)
        self.Output.meta.ram_usage_per_requested_pixel = 2 * dtype.type().nbytes * num_channels
Exemplo n.º 5
0
    def setupOutputs(self):
        self.outputs["WriteImage"].meta.shape = (1,)
        self.outputs["WriteImage"].meta.dtype = object

        self.f = self.inputs["h5N5File"].value
        h5N5Path = self.inputs["h5N5Path"].value

        # On windows, there may be backslashes.
        h5N5Path = h5N5Path.replace("\\", "/")

        h5N5GroupName, datasetName = os.path.split(h5N5Path)
        if h5N5GroupName == "":
            g = self.f
        else:
            if h5N5GroupName in self.f:
                g = self.f[h5N5GroupName]
            else:
                g = self.f.create_group(h5N5GroupName)

        dataShape = self.Image.meta.shape
        self.logger.info(f"Data shape: {dataShape}")

        dtype = self.Image.meta.dtype
        if isinstance(dtype, numpy.dtype):
            # Make sure we're dealing with a type (e.g. numpy.float64),
            # not a numpy.dtype
            dtype = dtype.type
        # Set up our chunk shape: Aim for a cube that's roughly 512k in size
        dtypeBytes = dtype().nbytes

        tagged_maxshape = self.Image.meta.getTaggedShape()
        if "t" in tagged_maxshape:
            # Assume that chunks should not span multiple t-slices,
            # and channels are often handled separately, too.
            tagged_maxshape["t"] = 1

        if "c" in tagged_maxshape:
            tagged_maxshape["c"] = 1

        self.chunkShape = determineBlockShape(list(tagged_maxshape.values()), 512_000.0 / dtypeBytes)

        if datasetName in list(g.keys()):
            del g[datasetName]
        kwargs = {"shape": dataShape, "dtype": dtype, "chunks": self.chunkShape}
        if self.CompressionEnabled.value:
            kwargs["compression"] = "gzip"  # <-- Would be nice to use lzf compression here, but that is h5py-specific.
            if isinstance(self.f, h5py.File):
                kwargs["compression_opts"] = 1  # <-- Optimize for speed, not disk space.
            else:  # z5py has uses different names here
                kwargs["level"] = 1  # <-- Optimize for speed, not disk space.
        else:
            if isinstance(self.f, z5py.N5File):  # n5 uses gzip level 5 as default compression.
                kwargs["compression"] = "raw"

        self.d = g.create_dataset(datasetName, **kwargs)

        if self.Image.meta.drange is not None:
            self.d.attrs["drange"] = self.Image.meta.drange
        if self.Image.meta.display_mode is not None:
            self.d.attrs["display_mode"] = self.Image.meta.display_mode
Exemplo n.º 6
0
    def setupOutputs(self):
        tagged_shape = self.RawImage.meta.getTaggedShape()
        tagged_shape['c'] = 1

        # Aim for blocks that are roughly 1MB
        block_shape = determineBlockShape(tagged_shape.values(), 1e6)
        self.opLabelArray.blockShape.setValue(block_shape)
Exemplo n.º 7
0
    def setupOutputs(self):
        self.outputs["WriteImage"].meta.shape = (1, )
        self.outputs["WriteImage"].meta.dtype = object

        self.f = self.inputs["hdf5File"].value
        hdf5Path = self.inputs["hdf5Path"].value

        # On windows, there may be backslashes.
        hdf5Path = hdf5Path.replace('\\', '/')

        hdf5GroupName, datasetName = os.path.split(hdf5Path)
        if hdf5GroupName == "":
            g = self.f
        else:
            if hdf5GroupName in self.f:
                g = self.f[hdf5GroupName]
            else:
                g = self.f.create_group(hdf5GroupName)

        dataShape = self.Image.meta.shape
        self.logger.info("Data shape: {}".format(dataShape))

        dtype = self.Image.meta.dtype
        if type(dtype) is numpy.dtype:
            # Make sure we're dealing with a type (e.g. numpy.float64),
            #  not a numpy.dtype
            dtype = dtype.type
        # Set up our chunk shape: Aim for a cube that's roughly 512k in size
        dtypeBytes = dtype().nbytes

        tagged_maxshape = self.Image.meta.getTaggedShape()
        if 't' in tagged_maxshape:
            # Assume that chunks should not span multiple t-slices,
            #  and channels are often handled separately, too.
            tagged_maxshape['t'] = 1

        if 'c' in tagged_maxshape:
            tagged_maxshape['c'] = 1

        self.chunkShape = determineBlockShape(tagged_maxshape.values(),
                                              512000.0 / dtypeBytes)

        if datasetName in g.keys():
            del g[datasetName]
        kwargs = {
            'shape': dataShape,
            'dtype': dtype,
            'chunks': self.chunkShape
        }
        if self.CompressionEnabled.value:
            kwargs[
                'compression'] = 'gzip'  # <-- Would be nice to use lzf compression here, but that is h5py-specific.
            kwargs[
                'compression_opts'] = 1  # <-- Optimize for speed, not disk space.
        self.d = g.create_dataset(datasetName, **kwargs)

        if self.Image.meta.drange is not None:
            self.d.attrs['drange'] = self.Image.meta.drange
        if self.Image.meta.display_mode is not None:
            self.d.attrs['display_mode'] = self.Image.meta.display_mode
Exemplo n.º 8
0
    def setupOutputs(self):
        # We assume that channel the last axis
        assert self.FeatureImage.meta.getAxisKeys()[-1] == 'c'
        assert self.LabelImage.meta.getAxisKeys()[-1] == 'c'
        assert self.LabelImage.meta.shape[-1] == 1
        
        # For now, we assume that the two input images have the same shape (except channel)
        # This constraint could be relaxed in the future if necessary
        assert self.FeatureImage.meta.shape[:-1] == self.LabelImage.meta.shape[:-1],\
            "FeatureImage and LabelImage shapes do not match: {} vs {}"\
            "".format( self.FeatureImage.meta.shape, self.LabelImage.meta.shape )
    
        self.LabelAndFeatureMatrix.meta.shape = (1,)
        self.LabelAndFeatureMatrix.meta.dtype = object
        
        num_feature_channels = self.FeatureImage.meta.shape[-1]
        if num_feature_channels != self.LabelAndFeatureMatrix.meta.num_feature_channels:
            self.LabelAndFeatureMatrix.meta.num_feature_channels = num_feature_channels
            self.LabelAndFeatureMatrix.setDirty()

        self.ProgressSignal.meta.shape = (1,)
        self.ProgressSignal.meta.dtype = object
        self.ProgressSignal.setValue( self.progressSignal )

        # Auto-choose a blockshape
        blockshape = determineBlockShape( self.LabelImage.meta.shape,
                                          OpFeatureMatrixCache.MAX_BLOCK_PIXELS )
        self._init_blocks(self.LabelImage.meta.shape, blockshape)
Exemplo n.º 9
0
    def setupOutputs(self):
        shape, dtype, axiskeys = self._default_accessor.shape, self._default_accessor.dtype, self._default_accessor.axiskeys
        
        # FIXME: For now, we hard-code DVID volumes to have a large (1M cubed) shape.
        tagged_shape = collections.OrderedDict( zip(axiskeys, shape) )
        for k,v in tagged_shape.items():
            if k in 'xyz':
                tagged_shape[k] = int(1e6)
        shape = tuple(tagged_shape.values())
        
        num_channels = shape[0]
        if self._transpose_axes:
            shape = tuple(reversed(shape))
            axiskeys = "".join(reversed(axiskeys))

        self.Output.meta.shape = shape
        self.Output.meta.dtype = dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags( axiskeys ) # FIXME: Also copy resolution, etc.
        
        # To avoid requesting extremely large blocks, limit each request to 500MB each.
        max_pixels = 2**29 / self.Output.meta.dtype().nbytes
        self.Output.meta.ideal_blockshape = determineBlockShape( self.Output.meta.shape, max_pixels )
        
        # For every request, we probably need room RAM for the array and for the http buffer
        # (and hopefully nothing more)
        self.Output.meta.ram_usage_per_requested_pixel = 2 * dtype.type().nbytes * num_channels
Exemplo n.º 10
0
 def setupOutputs(self):
     tagged_shape = self.RawImage.meta.getTaggedShape()
     tagged_shape['c'] = 1
     
     # Aim for blocks that are roughly 1MB
     block_shape = determineBlockShape( tagged_shape.values(), 1e6 )
     self.opLabelArray.blockShape.setValue( block_shape )
Exemplo n.º 11
0
    def setupOutputs(self):
        shape, dtype, axiskeys = self._default_accessor.shape, self._default_accessor.dtype, self._default_accessor.axiskeys

        # FIXME: For now, we hard-code DVID volumes to have a large (1M cubed) shape.
        tagged_shape = collections.OrderedDict(zip(axiskeys, shape))
        for k, v in tagged_shape.items():
            if k in 'xyz':
                tagged_shape[k] = int(1e6)
        shape = tuple(tagged_shape.values())

        num_channels = shape[0]
        if self._transpose_axes:
            shape = tuple(reversed(shape))
            axiskeys = "".join(reversed(axiskeys))

        self.Output.meta.shape = shape
        self.Output.meta.dtype = dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags(
            axiskeys)  # FIXME: Also copy resolution, etc.

        # To avoid requesting extremely large blocks, limit each request to 500MB each.
        max_pixels = 2**29 / self.Output.meta.dtype().nbytes
        self.Output.meta.ideal_blockshape = determineBlockShape(
            self.Output.meta.shape, max_pixels)

        # For every request, we probably need room RAM for the array and for the http buffer
        # (and hopefully nothing more)
        self.Output.meta.ram_usage_per_requested_pixel = 2 * dtype.type(
        ).nbytes * num_channels
Exemplo n.º 12
0
 def setupOutputs(self):
     tagged_shape = self.RawImage.meta.getTaggedShape()
     # labels are created for one channel (i.e. the label) and only in the
     # current time slice, so we can set both c and t to 1
     tagged_shape['c'] = 1
     tagged_shape['t'] = 1
     
     # Aim for blocks that are roughly 1MB
     block_shape = determineBlockShape( tagged_shape.values(), 1e6 )
     self.opLabelArray.blockShape.setValue( block_shape )
Exemplo n.º 13
0
    def setupOutputs(self):
        tagged_shape = self.RawImage.meta.getTaggedShape()
        # labels are created for one channel (i.e. the label) and only in the
        # current time slice, so we can set both c and t to 1
        tagged_shape['c'] = 1
        if 't' in tagged_shape:
            tagged_shape['t'] = 1

        # Aim for blocks that are roughly 1MB
        block_shape = determineBlockShape(tagged_shape.values(), 20**3)
        self.opLabelArray.blockShape.setValue(block_shape)
Exemplo n.º 14
0
    def setupOutputs(self):
        self.outputs["WriteImage"].meta.shape = (1,)
        self.outputs["WriteImage"].meta.dtype = object

        self.f = self.inputs["hdf5File"].value
        hdf5Path = self.inputs["hdf5Path"].value
        
        # On windows, there may be backslashes.
        hdf5Path = hdf5Path.replace('\\', '/')

        hdf5GroupName, datasetName = os.path.split(hdf5Path)
        if hdf5GroupName == "":
            g = self.f
        else:
            if hdf5GroupName in self.f:
                g = self.f[hdf5GroupName]
            else:
                g = self.f.create_group(hdf5GroupName)

        dataShape=self.Image.meta.shape
        self.logger.info( "Data shape: {}".format(dataShape))

        dtype = self.Image.meta.dtype
        if type(dtype) is numpy.dtype:
            # Make sure we're dealing with a type (e.g. numpy.float64),
            #  not a numpy.dtype
            dtype = dtype.type
        # Set up our chunk shape: Aim for a cube that's roughly 512k in size
        dtypeBytes = dtype().nbytes

        tagged_maxshape = self.Image.meta.getTaggedShape()
        if 't' in tagged_maxshape:
            # Assume that chunks should not span multiple t-slices,
            #  and channels are often handled separately, too.
            tagged_maxshape['t'] = 1

        if 'c' in tagged_maxshape:
            tagged_maxshape['c'] = 1
        
        self.chunkShape = determineBlockShape( tagged_maxshape.values(), 512000.0 / dtypeBytes )

        if datasetName in g.keys():
            del g[datasetName]
        kwargs = { 'shape' : dataShape, 'dtype' : dtype,
            'chunks' : self.chunkShape }
        if self.CompressionEnabled.value:
            kwargs['compression'] = 'gzip' # <-- Would be nice to use lzf compression here, but that is h5py-specific.
            kwargs['compression_opts'] = 1 # <-- Optimize for speed, not disk space.
        self.d=g.create_dataset(datasetName, **kwargs)

        if self.Image.meta.drange is not None:
            self.d.attrs['drange'] = self.Image.meta.drange
        if self.Image.meta.display_mode is not None:
            self.d.attrs['display_mode'] = self.Image.meta.display_mode
Exemplo n.º 15
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        max_blockshape = input_shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel

        num_threads = max(1, Request.global_thread_pool.num_workers)
        if lazyflow.AVAILABLE_RAM_MB != 0:
            available_ram = lazyflow.AVAILABLE_RAM_MB * 1e6
        else:
            available_ram = psutil.virtual_memory().available

        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2 * outputSlot.meta.dtype(
            ).nbytes * outputSlot.meta.shape[-1] + 4
            logger.warn("Unknown per-pixel RAM requirement.  Making a guess.")

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info(
            "Estimated RAM usage per pixel is {} bytes * safety factor ({})".
            format(ram_usage_per_requested_pixel, safety_factor))
        ram_usage_per_requested_pixel *= safety_factor

        if ideal_blockshape is None:
            blockshape = determineBlockShape(
                input_shape,
                available_ram / (num_threads * ram_usage_per_requested_pixel))
            logger.warn(
                "Chose an arbitrary request blockshape {}".format(blockshape))
        else:
            logger.info(
                "determining blockshape assuming available_ram is {} GB, split between {} threads"
                .format(available_ram / 1e9, num_threads))

            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            blockshape = determine_optimal_request_blockshape(
                max_blockshape[:-1], ideal_blockshape[:-1],
                ram_usage_per_requested_pixel, num_threads, available_ram)
            blockshape += (outputSlot.meta.shape[-1], )
            logger.info("Chose blockshape: {}".format(blockshape))
            logger.info("Estimated RAM usage per block is {} GB".format(
                ram_usage_per_requested_pixel * numpy.prod(blockshape[:-1]) /
                1e9))

        return blockshape
Exemplo n.º 16
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        max_blockshape = input_shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel
        
        num_threads = Request.global_thread_pool.num_workers
        if lazyflow.AVAILABLE_RAM_MB != 0:
            available_ram = lazyflow.AVAILABLE_RAM_MB * 1e6
        else:
            available_ram = psutil.virtual_memory().available
        
        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2*outputSlot.meta.dtype().nbytes*outputSlot.meta.shape[-1] + 4
            logger.warn( "Unknown per-pixel RAM requirement.  Making a guess." )

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info( "Estimated RAM usage per pixel is {} bytes * safety factor ({})"
                           .format( ram_usage_per_requested_pixel, safety_factor ) )
        ram_usage_per_requested_pixel *= safety_factor
        
        if ideal_blockshape is None:
            blockshape = determineBlockShape( input_shape, available_ram/(num_threads*ram_usage_per_requested_pixel) )
            logger.warn( "Chose an arbitrary request blockshape {}".format( blockshape ) )
        else:
            logger.info( "determining blockshape assuming available_ram is {} GB, split between {} threads"
                               .format( available_ram/1e9, num_threads ) )
            
            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            blockshape = determine_optimal_request_blockshape( max_blockshape[:-1], 
                                                               ideal_blockshape[:-1], 
                                                               ram_usage_per_requested_pixel, 
                                                               num_threads, 
                                                               available_ram )
            blockshape += (outputSlot.meta.shape[-1],)
            logger.info( "Chose blockshape: {}".format( blockshape ) )
            logger.info( "Estimated RAM usage per block is {} GB"
                         .format( ram_usage_per_requested_pixel * numpy.prod( blockshape[:-1] ) / 1e9 ) )

        return blockshape
Exemplo n.º 17
0
    def setupOutputs(self):
        """Copied that from opPixelClassification.py

        opLabelArray is OpCompressedUserLabelArray -> needs to be configured:
          - blockShape needs to be set!
        """
        tagged_shape = self.RawImage.meta.getTaggedShape()
        # labels are created for one channel (i.e. the label) and only in the
        # current time slice, so we can set both c and t to 1
        tagged_shape['c'] = 1
        if 't' in tagged_shape:
            tagged_shape['t'] = 1

        # Aim for blocks with roughly the same size as in pixel classification,
        # taking into account that counting will be 2d: 40 ** 3 = 256 ** 2
        block_shape = determineBlockShape(list(tagged_shape.values()), 256 ** 2)
        self.opLabelArray.blockShape.setValue(block_shape)
        self.opBoxArray.blockShape.setValue(block_shape)
Exemplo n.º 18
0
    def setupOutputs(self):
        shape, dtype, axiskeys = self._default_accessor.shape, self._default_accessor.dtype, self._default_accessor.axiskeys
        num_channels = shape[0]
        if self._transpose_axes:
            shape = tuple(reversed(shape))
            axiskeys = "".join(reversed(axiskeys))

        self.Output.meta.shape = shape
        self.Output.meta.dtype = dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags( axiskeys ) # FIXME: Also copy resolution, etc.
        
        # To avoid requesting extremely large blocks, limit each request to 500MB each.
        max_pixels = 2**29 / self.Output.meta.dtype().nbytes
        self.Output.meta.ideal_blockshape = determineBlockShape( self.Output.meta.shape, max_pixels )
        
        # For every request, we probably need room RAM for the array and for the http buffer
        # (and hopefully nothing more)
        self.Output.meta.ram_usage_per_requested_pixel = 2 * dtype.type().nbytes * num_channels
Exemplo n.º 19
0
    def setupOutputs(self):
        """Copied that from opPixelClassification.py

        opLabelArray is OpCompressedUserLabelArray -> needs to be configured:
          - blockShape needs to be set!
        """
        tagged_shape = self.RawImage.meta.getTaggedShape()
        # labels are created for one channel (i.e. the label) and only in the
        # current time slice, so we can set both c and t to 1
        tagged_shape["c"] = 1
        if "t" in tagged_shape:
            tagged_shape["t"] = 1

        # Aim for blocks with roughly the same size as in pixel classification,
        # taking into account that counting will be 2d: 40 ** 3 = 256 ** 2
        block_shape = determineBlockShape(list(tagged_shape.values()), 256**2)
        self.opLabelArray.blockShape.setValue(block_shape)
        self.opBoxArray.blockShape.setValue(block_shape)
Exemplo n.º 20
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        max_blockshape = input_shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel
        
        num_threads = Request.global_thread_pool.num_workers
        available_ram = psutil.virtual_memory().available
        
        # Fudge factor: Reduce RAM usage by a bit
        available_ram *= 0.5

        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: (bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 4 + 2*outputSlot.meta.dtype().nbytes*outputSlot.meta.shape[-1]
            logger.warn( "Unknown RAM usage.  Making a guess." )
        else:
            logger.info( "Estimated RAM usage per pixel is {} bytes"
                               .format( ram_usage_per_requested_pixel ) )
        
        if ideal_blockshape is None:
            blockshape = determineBlockShape( input_shape, available_ram/(num_threads*ram_usage_per_requested_pixel) )
            logger.warn( "Chose an arbitrary request blockshape {}".format( blockshape ) )
        else:
            logger.info( "determining blockshape assuming available_ram is {} GB, split between {} threads"
                               .format( available_ram/1e9, num_threads ) )
            
            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            blockshape = determine_optimal_request_blockshape( max_blockshape[:-1], 
                                                               ideal_blockshape[:-1], 
                                                               ram_usage_per_requested_pixel, 
                                                               num_threads, 
                                                               available_ram )
            blockshape += (outputSlot.meta.shape[-1],)
            logger.info( "Chose blockshape: {}".format( blockshape ) )
            logger.info( "Estimated RAM usage per block is {} GB"
                         .format( ram_usage_per_requested_pixel * numpy.prod( blockshape[:-1] ) / 1e9 ) )

        return blockshape
Exemplo n.º 21
0
    def setupOutputs(self):
        # We assume that channel the last axis
        assert self.FeatureImage.meta.getAxisKeys()[-1] == "c"
        assert self.LabelImage.meta.getAxisKeys()[-1] == "c"
        assert self.LabelImage.meta.shape[-1] == 1

        # For now, we assume that the two input images have the same shape (except channel)
        # This constraint could be relaxed in the future if necessary
        assert self.FeatureImage.meta.shape[:-1] == self.LabelImage.meta.shape[:-1], (
            "FeatureImage and LabelImage shapes do not match: {} vs {}"
            "".format(self.FeatureImage.meta.shape,
                      self.LabelImage.meta.shape))

        self.LabelAndFeatureMatrix.meta.shape = (1, )
        self.LabelAndFeatureMatrix.meta.dtype = object
        self.LabelAndFeatureMatrix.meta.channel_names = self.FeatureImage.meta.channel_names

        num_feature_channels = self.FeatureImage.meta.shape[-1]
        if num_feature_channels != self.LabelAndFeatureMatrix.meta.num_feature_channels:
            self.LabelAndFeatureMatrix.meta.num_feature_channels = num_feature_channels
            self.LabelAndFeatureMatrix.setDirty()

        self.ProgressSignal.meta.shape = (1, )
        self.ProgressSignal.meta.dtype = object
        self.ProgressSignal.setValue(self.progressSignal)

        if self.LabelImage.meta.ideal_blockshape is not None and all(
                self.LabelImage.meta.ideal_blockshape):
            blockshape = self.LabelImage.meta.ideal_blockshape
        else:
            # Auto-choose a blockshape
            tagged_shape = self.LabelImage.meta.getTaggedShape()
            if "t" in tagged_shape:
                # A block should never span multiple time slices.
                # For txy volumes, that could lead to lots of extra features being computed.
                tagged_shape["t"] = 1
            blockshape = determineBlockShape(list(tagged_shape.values()),
                                             40**3)

        # Don't span more than 256 px along any axis
        blockshape = tuple(min(x, 256) for x in blockshape)
        self._init_blocks(self.LabelImage.meta.shape, blockshape)
Exemplo n.º 22
0
    def setupOutputs(self):
        shape, dtype, axiskeys = self._default_accessor.shape, self._default_accessor.dtype, self._default_accessor.axiskeys
        num_channels = shape[0]
        if self._transpose_axes:
            shape = tuple(reversed(shape))
            axiskeys = "".join(reversed(axiskeys))

        self.Output.meta.shape = shape
        self.Output.meta.dtype = dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags(
            axiskeys)  # FIXME: Also copy resolution, etc.

        # To avoid requesting extremely large blocks, limit each request to 500MB each.
        max_pixels = 2**29 / self.Output.meta.dtype().nbytes
        self.Output.meta.ideal_blockshape = determineBlockShape(
            self.Output.meta.shape, max_pixels)

        # For every request, we probably need room RAM for the array and for the http buffer
        # (and hopefully nothing more)
        self.Output.meta.ram_usage_per_requested_pixel = 2 * dtype.type(
        ).nbytes * num_channels
Exemplo n.º 23
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel
        max_blockshape = outputSlot.meta.max_blockshape or input_shape

        num_channels = 1
        tagged_shape = outputSlot.meta.getTaggedShape()

        available_ram = Memory.getAvailableRamComputation()

        # Generally, we don't want to split requests across channels.
        if "c" in list(tagged_shape.keys()):
            num_channels = tagged_shape["c"]
            channel_index = list(tagged_shape.keys()).index("c")
            input_shape = input_shape[:channel_index] + input_shape[
                channel_index + 1:]
            max_blockshape = max_blockshape[:channel_index] + max_blockshape[
                channel_index + 1:]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the channel dimension.
                num_channels = ideal_blockshape[channel_index]
                ideal_blockshape = ideal_blockshape[:
                                                    channel_index] + ideal_blockshape[
                                                        channel_index + 1:]
            del tagged_shape["c"]

        # Generally, we don't want to join time slices
        if "t" in tagged_shape.keys():
            blockshape_time_steps = 1
            time_index = list(tagged_shape.keys()).index("t")
            input_shape = input_shape[:time_index] + input_shape[time_index +
                                                                 1:]
            max_blockshape = max_blockshape[:time_index] + max_blockshape[
                time_index + 1:]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the time dimension.
                blockshape_time_steps = ideal_blockshape[time_index]
                ideal_blockshape = ideal_blockshape[:
                                                    time_index] + ideal_blockshape[
                                                        time_index + 1:]
                available_ram /= blockshape_time_steps
            del tagged_shape["t"]

        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2 * outputSlot.meta.dtype(
            ).nbytes * num_channels + 4
            warnings.warn(
                "Unknown per-pixel RAM requirement.  Making a guess.")

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info(
            "Estimated RAM usage per pixel is {} * safety factor ({})".format(
                Memory.format(ram_usage_per_requested_pixel), safety_factor))
        ram_usage_per_requested_pixel *= safety_factor

        if ideal_blockshape is None:
            blockshape = determineBlockShape(
                input_shape,
                (available_ram //
                 (self._num_threads * ram_usage_per_requested_pixel)))
            blockshape = tuple(numpy.minimum(max_blockshape, blockshape))
            warnings.warn("Chose an arbitrary request blockshape")
        else:
            logger.info("determining blockshape assuming available_ram is {}"
                        ", split between {} threads".format(
                            Memory.format(available_ram), self._num_threads))

            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            #
            # Also, it rarely makes sense to request more than one time slice, so we omit that, too. (See above.)
            blockshape = determine_optimal_request_blockshape(
                max_blockshape, ideal_blockshape,
                ram_usage_per_requested_pixel, self._num_threads,
                available_ram)
        # compute the RAM size of the block before adding back t anc c dimensions
        fmt = Memory.format(ram_usage_per_requested_pixel *
                            numpy.prod(blockshape))
        # If we removed time and channel from consideration, add them back now before returning
        if "t" in outputSlot.meta.getAxisKeys():
            blockshape = blockshape[:time_index] + (
                blockshape_time_steps, ) + blockshape[time_index:]

        if "c" in outputSlot.meta.getAxisKeys():
            blockshape = blockshape[:channel_index] + (
                num_channels, ) + blockshape[channel_index:]

        logger.info("Chose blockshape: {}".format(blockshape))
        logger.info("Estimated RAM usage per block is {}".format(fmt))

        return blockshape
Exemplo n.º 24
0
 def testSmallMax(self):
     # In this case, the target size is too large for the given max_shape
     # Therefore, block_shape == max_shape
     max_shape = (1,2,3,2,1)
     block_shape = determineBlockShape( max_shape, 1000 )
     assert block_shape == max_shape
Exemplo n.º 25
0
 def testBasic2(self):
     max_shape = (1, 100, 5, 200, 3)
     block_shape = determineBlockShape(max_shape, 1000)
     assert block_shape == (1, 8, 5, 8, 3)
Exemplo n.º 26
0
 def testBasic(self):
     max_shape = (1000, 1000, 1000, 1)
     block_shape = determineBlockShape(max_shape, 1e6)
     assert block_shape == (
         100, 100, 100,
         1), "Got {}, expected (100,100,100,1)".format(block_shape)
Exemplo n.º 27
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel

        num_channels = 1
        tagged_shape = outputSlot.meta.getTaggedShape()
        
        # Generally, we don't want to split requests across channels.
        if 'c' in tagged_shape.keys():
            num_channels = tagged_shape['c']
            channel_index = tagged_shape.keys().index('c')
            input_shape = input_shape[:channel_index] + input_shape[channel_index+1:]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the channel dimension.
                num_channels = ideal_blockshape[channel_index]
                ideal_blockshape = ideal_blockshape[:channel_index] + ideal_blockshape[channel_index+1:]

        max_blockshape = input_shape
        num_threads = max(1, Request.global_thread_pool.num_workers)
        available_ram = Memory.getAvailableRamComputation()
        
        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2*outputSlot.meta.dtype().nbytes*num_channels + 4
            warnings.warn( "Unknown per-pixel RAM requirement.  Making a guess." )

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info("Estimated RAM usage per pixel is {} * safety factor ({})"
                    .format( Memory.format(ram_usage_per_requested_pixel), safety_factor ) )
        ram_usage_per_requested_pixel *= safety_factor
        
        if ideal_blockshape is None:
            blockshape = determineBlockShape( input_shape, available_ram/(num_threads*ram_usage_per_requested_pixel) )
            if 'c' in outputSlot.meta.getAxisKeys():
                blockshape = blockshape[:channel_index] + (num_channels,) + blockshape[channel_index:]
            warnings.warn( "Chose an arbitrary request blockshape {}".format( blockshape ) )
        else:
            logger.info("determining blockshape assuming available_ram is {}"
                        ", split between {} threads"
                        .format(Memory.format(available_ram), num_threads))
            
            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            blockshape = determine_optimal_request_blockshape( max_blockshape,
                                                               ideal_blockshape,
                                                               ram_usage_per_requested_pixel, 
                                                               num_threads, 
                                                               available_ram )
            if 'c' in outputSlot.meta.getAxisKeys():
                blockshape = blockshape[:channel_index] + (num_channels,) + blockshape[channel_index:]
            logger.info( "Chose blockshape: {}".format( blockshape ) )
            fmt = Memory.format(ram_usage_per_requested_pixel *
                                numpy.prod(blockshape[:-1]))
            logger.info("Estimated RAM usage per block is {}".format(fmt))

        return blockshape
Exemplo n.º 28
0
 def testSmallMax(self):
     # In this case, the target size is too large for the given max_shape
     # Therefore, block_shape == max_shape
     max_shape = (1, 2, 3, 2, 1)
     block_shape = determineBlockShape(max_shape, 1000)
     assert block_shape == max_shape
Exemplo n.º 29
0
 def testBasic2(self):
     max_shape = (1,100,5,200,3)
     block_shape = determineBlockShape( max_shape, 1000 )
     assert block_shape == (1,8,5,8,3)
Exemplo n.º 30
0
 def testBasic(self):
     max_shape = (1000,1000,1000,1)
     block_shape = determineBlockShape( max_shape, 1e6 )
     assert block_shape == (100,100,100,1), "Got {}, expected (100,100,100,1)".format(block_shape)
Exemplo n.º 31
0
    def _determine_blockshape(self, outputSlot):
        """
        Choose a blockshape using the slot metadata (if available) or an arbitrary guess otherwise.
        """
        input_shape = outputSlot.meta.shape
        ideal_blockshape = outputSlot.meta.ideal_blockshape
        ram_usage_per_requested_pixel = outputSlot.meta.ram_usage_per_requested_pixel
        max_blockshape = outputSlot.meta.max_blockshape or input_shape

        num_channels = 1
        tagged_shape = outputSlot.meta.getTaggedShape()

        available_ram = Memory.getAvailableRamComputation()

        # Generally, we don't want to split requests across channels.
        if "c" in list(tagged_shape.keys()):
            num_channels = tagged_shape["c"]
            channel_index = list(tagged_shape.keys()).index("c")
            input_shape = input_shape[:channel_index] + input_shape[channel_index + 1 :]
            max_blockshape = max_blockshape[:channel_index] + max_blockshape[channel_index + 1 :]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the channel dimension.
                num_channels = ideal_blockshape[channel_index]
                ideal_blockshape = ideal_blockshape[:channel_index] + ideal_blockshape[channel_index + 1 :]
            del tagged_shape["c"]

        # Generally, we don't want to join time slices
        if "t" in tagged_shape.keys():
            blockshape_time_steps = 1
            time_index = list(tagged_shape.keys()).index("t")
            input_shape = input_shape[:time_index] + input_shape[time_index + 1 :]
            max_blockshape = max_blockshape[:time_index] + max_blockshape[time_index + 1 :]
            if ideal_blockshape:
                # Never enlarge 'ideal' in the time dimension.
                blockshape_time_steps = ideal_blockshape[time_index]
                ideal_blockshape = ideal_blockshape[:time_index] + ideal_blockshape[time_index + 1 :]
                available_ram /= blockshape_time_steps
            del tagged_shape["t"]

        if ram_usage_per_requested_pixel is None:
            # Make a conservative guess: 2*(bytes for dtype) * (num channels) + (fudge factor=4)
            ram_usage_per_requested_pixel = 2 * outputSlot.meta.dtype().nbytes * num_channels + 4
            warnings.warn("Unknown per-pixel RAM requirement.  Making a guess.")

        # Safety factor (fudge factor): Double the estimated RAM usage per pixel
        safety_factor = 2.0
        logger.info(
            "Estimated RAM usage per pixel is {} * safety factor ({})".format(
                Memory.format(ram_usage_per_requested_pixel), safety_factor
            )
        )
        ram_usage_per_requested_pixel *= safety_factor

        if ideal_blockshape is None:
            blockshape = determineBlockShape(
                input_shape, (available_ram // (self._num_threads * ram_usage_per_requested_pixel))
            )
            blockshape = tuple(numpy.minimum(max_blockshape, blockshape))
            warnings.warn("Chose an arbitrary request blockshape")
        else:
            logger.info(
                "determining blockshape assuming available_ram is {}"
                ", split between {} threads".format(Memory.format(available_ram), self._num_threads)
            )

            # By convention, ram_usage_per_requested_pixel refers to the ram used when requesting ALL channels of a 'pixel'
            # Therefore, we do not include the channel dimension in the blockshapes here.
            #
            # Also, it rarely makes sense to request more than one time slice, so we omit that, too. (See above.)
            blockshape = determine_optimal_request_blockshape(
                max_blockshape, ideal_blockshape, ram_usage_per_requested_pixel, self._num_threads, available_ram
            )

        # If we removed time and channel from consideration, add them back now before returning
        if "t" in outputSlot.meta.getAxisKeys():
            blockshape = blockshape[:time_index] + (blockshape_time_steps,) + blockshape[time_index:]

        if "c" in outputSlot.meta.getAxisKeys():
            blockshape = blockshape[:channel_index] + (num_channels,) + blockshape[channel_index:]

        logger.info("Chose blockshape: {}".format(blockshape))
        fmt = Memory.format(ram_usage_per_requested_pixel * numpy.prod(blockshape[:-1]))
        logger.info("Estimated RAM usage per block is {}".format(fmt))

        return blockshape