Exemplo n.º 1
0
def get_dir_files(directory):
    """
    Make dictionary of filenames in given directory
    files["filename"]["data"] = fits data
    files["filename"]["lbl"] = lbl info
    files["filename"]["header"] = fits header info

    returns: dictionary of files
    """
    files = {}
    for filename in os.listdir(directory):
        filepath = directory + "/" + filename
        name = filename.split('.')[0]
        ext = '.' + '.'.join(filename.split('.')[1:])

        if name not in files:
            files[name] = {}

        if ext == ".fit.fz" or ext == ".fit":
            with fits.open(filepath) as hdul:
                files[name]["data"] = hdul[1].data
                files[name]["header"] = hdul[1].header

        elif ext == ".lbl":
            files[name]["lbl"] = lblparser.lbl_parse((filepath))

    # check for files missing their fit or lbl
    missing = [name for name in files.keys() if len(files[name]) != 3]
    for m in missing:
        print("Missing corresponding fits or lbl for file: " + m)
        del files[m]

    return files  # nested dictionary -> files[filename][lbl or data]
Exemplo n.º 2
0
def preprocessSampleData(light_idx, FITSFiles, longid):
    """Use provided correction methods to subtract out dark images and use flats to correct for vignetting.
       Write the processed file to the temporary preprocessed directory.
    """
    dark_idx, flat_idx, ttd, ttf = odf_mapper(FITSFiles, light_idx)
    print(ttd, ttf)

    if dark_idx < 0 and flat_idx < 0:
        print("NON-COMPLIANT")
        return

    lights_lbl = lbl_parse(FITSFiles['lights_lbl'][light_idx])

    light = CCDData.read(FITSFiles['lights'][light_idx], unit='adu')
    dark = CCDData.read(FITSFiles['darks'][dark_idx], unit='adu')
    flat = CCDData.read(FITSFiles['flats'][flat_idx], unit='adu')

    corr = flat.data
    corr1 = light.data - dark.data
    light.data = corr1 / corr
    flat_corrected = light

    path_plan = processed_volume + "/" + sample + "/"
    try:
        print("Attempting to build path...")
        os.makedirs(path_plan)
        print("Built!")
        print("Writing to file " + str(longid.split('.')[0]) + ".fits")
        flat_corrected.write(path_plan + str(longid.split('.')[0]) + '.fits')
    except Exception as e:
        print("Directory already exists. Writing to file " +
              str(longid.split('.')[0]) + ".fits")
        flat_corrected.write(path_plan + str(longid.split('.')[0]) + '.fits')
    return flat_corrected
Exemplo n.º 3
0
def getConeParams(lbl_filepath):
    lab = lbl_parse(lbl_filepath)
    world_ra = float(lab['RIGHT_ASCENSION'].partition('<')[0])
    world_dec = float(lab['DECLINATION'].partition('<')[0])
    hor_fov_arcsec = float(lab['HORIZONTAL_PIXEL_FOV'].partition('<')[0])
    radius = 0.15
    return (world_ra, world_dec, radius)
Exemplo n.º 4
0
def odf_mapper(FITSFiles, light_idx):
    """Transforms light index into closest dark and flat indexes"""
    lab = lbl_parse(FITSFiles['lights'][light_idx][:-3] + "lbl")
    ttd = lab["START_TIME"].partition('T')

    best_didx = 0
    best_fidx = 0
    min_t_d_delta = 99999999
    min_t_f_delta = 99999999

    for didx in range(len(FITSFiles['darks'])):
        dta = lbl_parse(FITSFiles['darks'][didx][:-3] + "lbl")
        ttd_dta = dta["STOP_TIME"].partition('T')
        if ttd_dta[0] == ttd[0]:
            tdelta = abs((datetime.strptime(ttd_dta[2], FMT) -
                          datetime.strptime(ttd[2], FMT)).total_seconds())
            if tdelta < min_t_d_delta:
                min_t_d_delta = tdelta
                best_didx = didx

    for fidx in range(len(FITSFiles['flats'])):
        fta = lbl_parse(FITSFiles['flats'][fidx][:-3] + "lbl")
        ttf_fta = fta["STOP_TIME"].partition('T')
        if (ttf_fta[0] == ttd[0]):
            tdelta = abs((datetime.strptime(ttf_fta[2], FMT) -
                          datetime.strptime(ttd[2], FMT)).total_seconds())
            if tdelta < min_t_f_delta:
                min_t_f_delta = tdelta
                best_fidx = fidx

    light_lbl = lbl_parse(FITSFiles['lights'][light_idx][:-3] + "lbl")
    dark_lbl = lbl_parse(FITSFiles['darks'][best_didx][:-3] + "lbl")
    flat_lbl = lbl_parse(FITSFiles['flats'][best_fidx][:-3] + "lbl")

    if (flat_lbl['TARGET_NAME'] == '"FLAT FIELD"'
            and dark_lbl['TARGET_NAME'] == '"DARK"'
            and float(flat_lbl['EXPOSURE_DURATION'].partition('<')[0])
            == float(dark_lbl['EXPOSURE_DURATION'].partition('<')[0])
            and light_lbl['TARGET_NAME'] == '"ASTEROID"'
            and light_lbl['FILTER_NAME'] == '"NONE"'
            and float(light_lbl['EXPOSURE_DURATION'].partition('<')[0])
            == float(dark_lbl['EXPOSURE_DURATION'].partition('<')[0])):
        return (best_didx, best_fidx, min_t_d_delta, min_t_f_delta)
    else:
        return (-1, -1, 0, 0)