Exemplo n.º 1
0
    def test_should_handle_unexpected_case_2(self, cfg):
        # given
        cls = Classifier(condition='#######0', action=4, quality=0.4, cfg=cfg)
        cls.mark[0].update([0, 1])
        cls.mark[1].update([0, 1])
        cls.mark[2].update([0, 1])
        cls.mark[3].update([0, 1])
        cls.mark[4].update([1])
        cls.mark[5].update([0, 1])
        cls.mark[6].update([0, 1])

        p0 = Perception('11101010')
        p1 = Perception('10011101')
        time = 94

        # when
        new_cl = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cl.condition == Condition('#110#010')
        assert new_cl.effect == Effect('#001#101')
        assert new_cl.is_marked() is False
        assert time == new_cl.tga
        assert time == new_cl.talp
        assert abs(cls.q - 0.38) < 0.01
Exemplo n.º 2
0
    def apply_alp(self, previous_situation: Perception, action: int,
                  situation: Perception, time: int,
                  population: ClassifiersList,
                  match_set: ClassifiersList) -> None:
        """
        The Anticipatory Learning Process. Handles all updates by the ALP,
        insertion of new classifiers in pop and possibly matchSet, and
        deletion of inadequate classifiers in pop and possibly matchSet.

        :param previous_situation:
        :param action:
        :param situation:
        :param time:
        :param population:
        :param match_set:
        """
        new_list = ClassifiersList(cfg=self.cfg)
        new_cl: Optional[Classifier] = None
        was_expected_case = False
        delete_count = 0

        for cl in self:
            cl.increase_experience()
            cl.set_alp_timestamp(time)

            if cl.does_anticipate_correctly(previous_situation, situation):
                new_cl = expected_case(cl, previous_situation, time)
                was_expected_case = True
            else:
                new_cl = unexpected_case(cl, previous_situation, situation,
                                         time)

                if cl.is_inadequate():
                    # Removes classifier from population, match set
                    # and current list
                    delete_count += 1
                    lists = [x for x in [population, match_set, self] if x]
                    for lst in lists:
                        lst.safe_remove(cl)

            if new_cl is not None:
                new_cl.tga = time
                self.add_alp_classifier(new_cl, new_list)

        # No classifier anticipated correctly - generate new one
        if not was_expected_case:
            new_cl = cover(previous_situation, action, situation, time,
                           self.cfg)
            self.add_alp_classifier(new_cl, new_list)

        # Merge classifiers from new_list into self and population
        self.extend(new_list)
        population.extend(new_list)

        if match_set is not None:
            new_matching = [
                cl for cl in new_list if cl.condition.does_match(situation)
            ]
            match_set.extend(new_matching)
Exemplo n.º 3
0
    def test_should_handle_unexpected_case_1(self, cfg):
        # given
        cls = Classifier(action=2, cfg=cfg)

        p0 = Perception('01100000')
        p1 = Perception('10100010')
        time = 14

        new_cls = unexpected_case(cls, p0, p1, time)

        # Quality should be decreased
        assert 0.475 == cls.q

        # Should be marked with previous perception
        for mark_attrib in cls.mark:
            assert 1 == len(mark_attrib)

        assert '0' in cls.mark[0]
        assert '1' in cls.mark[1]
        assert '1' in cls.mark[2]
        assert '0' in cls.mark[3]
        assert '0' in cls.mark[4]
        assert '0' in cls.mark[5]
        assert '0' in cls.mark[6]
        assert '0' in cls.mark[7]

        # New classifier should not be the same object
        assert cls is not new_cls

        # Check attributes of a new classifier
        assert Condition('01####0#') == new_cls.condition
        assert 2 == new_cls.action
        assert Effect('10####1#') == new_cls.effect

        # There should be no mark
        for mark_attrib in new_cls.mark:
            assert 0 == len(mark_attrib)

        assert 0.5 == new_cls.q
        assert cls.r == new_cls.r
        assert time == new_cls.tga
        assert time == new_cls.talp
Exemplo n.º 4
0
    def test_should_handle_unexpected_case_6(self, cfg):
        # given
        cls = Classifier(condition='0#1####1',
                         action=2,
                         effect='1#0####0',
                         quality=0.38505,
                         reward=1.20898,
                         immediate_reward=0,
                         experience=11,
                         tga=95,
                         talp=873,
                         tav=71.3967,
                         cfg=cfg)
        cls.mark[1].update(['1'])
        cls.mark[3].update(['1'])
        cls.mark[4].update(['0', '1'])
        cls.mark[5].update(['1'])
        cls.mark[6].update(['0', '1'])

        p0 = Perception('01111101')
        p1 = Perception('11011110')
        time = 873

        # when
        new_cls = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cls is not None
        assert Condition('0#1###01') == new_cls.condition
        assert Effect('1#0###10') == new_cls.effect
        assert abs(0.5 - new_cls.q) < 0.1
        assert abs(1.20898 - new_cls.r) < 0.1
        assert abs(0 - new_cls.ir) < 0.1
        assert abs(71.3967 - new_cls.tav) < 0.1
        assert 1 == new_cls.exp
        assert 1 == new_cls.num
        assert time == new_cls.tga
        assert time == new_cls.talp
Exemplo n.º 5
0
    def test_should_handle_unexpected_case_5(self, cfg):
        # given
        cls = Classifier(condition='00####1#',
                         action=2,
                         effect='########',
                         quality=0.129,
                         reward=341.967,
                         immediate_reward=130.369,
                         experience=201,
                         tga=129,
                         talp=9628,
                         tav=25.08,
                         cfg=cfg)
        cls.mark[2].add('2')
        cls.mark[3].add('1')
        cls.mark[4].add('1')
        cls.mark[5].add('0')
        cls.mark[7].add('0')

        p0 = Perception('00211010')
        p1 = Perception('00001110')
        time = 9628

        # when
        new_cls = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cls is not None
        assert Condition('0021#01#') == new_cls.condition
        assert Effect('##00#1##') == new_cls.effect
        assert abs(0.5 - new_cls.q) < 0.1
        assert abs(341.967 - new_cls.r) < 0.1
        assert abs(130.369 - new_cls.ir) < 0.1
        assert abs(25.08 - new_cls.tav) < 0.1
        assert 1 == new_cls.exp
        assert 1 == new_cls.num
        assert time == new_cls.tga
        assert time == new_cls.talp
Exemplo n.º 6
0
    def test_should_handle_unexpected_case_3(self, cfg):
        cls = Classifier(condition='#####1#0',
                         effect='#####0#1',
                         quality=0.475,
                         cfg=cfg)

        cls.mark[0].add('1')
        cls.mark[1].add('1')
        cls.mark[2].add('0')
        cls.mark[3].add('1')
        cls.mark[5].add('1')
        cls.mark[7].add('1')

        p0 = Perception('11001110')
        p1 = Perception('01110000')
        time = 20

        new_cls = unexpected_case(cls, p0, p1, time)

        # Quality should be decreased
        assert 0.45125 == cls.q

        # No classifier should be generated here
        assert new_cls is None
Exemplo n.º 7
0
    def apply_alp(population: ClassifiersList, match_set: ClassifiersList,
                  action_set: ClassifiersList, p0: Perception, action: int,
                  p1: Perception, time: int, theta_exp: int,
                  cfg: Configuration) -> None:
        """
        The Anticipatory Learning Process. Handles all updates by the ALP,
        insertion of new classifiers in pop and possibly matchSet, and
        deletion of inadequate classifiers in pop and possibly matchSet.

        Parameters
        ----------
        population
        match_set
        action_set
        p0: Perception
        action: int
        p1: Perception
        time: int
        theta_exp
        cfg: Configuration

        Returns
        -------

        """
        new_list = ClassifiersList()
        new_cl: Optional[Classifier] = None
        was_expected_case = False
        delete_count = 0

        for cl in action_set:
            cl.increase_experience()
            cl.update_application_average(time)

            if cl.does_anticipate_correctly(p0, p1):
                new_cl = alp_acs2.expected_case(cl, p0, time)
                was_expected_case = True
            else:
                new_cl = alp_acs2.unexpected_case(cl, p0, p1, time)

                if cl.is_inadequate():
                    # Removes classifier from population, match set
                    # and current list
                    delete_count += 1
                    lists = [
                        x for x in [population, match_set, action_set] if x
                    ]
                    for lst in lists:
                        lst.safe_remove(cl)

            if new_cl is not None:
                new_cl.tga = time
                alp.add_classifier(new_cl, action_set, new_list, theta_exp)

        # No classifier anticipated correctly - generate new one
        if not was_expected_case:
            new_cl = alp_acs2.cover(p0, action, p1, time, cfg)
            alp.add_classifier(new_cl, action_set, new_list, theta_exp)

        # Merge classifiers from new_list into self and population
        action_set.extend(new_list)
        population.extend(new_list)

        if match_set is not None:
            new_matching = [
                cl for cl in new_list if matching(cl.condition, p1)
            ]
            match_set.extend(new_matching)