Exemplo n.º 1
0
def test_m_step():
    # make sure that the lower bound increases
    ips = init_ips(M, K, alpha, docs)
    alpha_ = alpha
    old_lb_val = lower_bound(ips, phi, alpha, beta, docs, V)

    alpha_, beta_ = m_step(ips, phi, alpha, docs, V)
    new_lb_val = lower_bound(ips, phi, alpha_, beta_, docs, V)
    
    assert_true(new_lb_val >= old_lb_val)
Exemplo n.º 2
0
def test_e_step():
    old_ips = init_ips(M, K, alpha, docs)
    new_ips, phi = e_step(alpha, beta, docs)

    # very permissive test(not sure how to test it better):
    # make sure new_ips changes
    assert_true(np.abs(new_ips - old_ips).min() >= 1e-5)

    # make sure sum to one
    for m in xrange(phi.size):
        assert_array_almost_equal(phi[m].sum(axis=1), 1)

    # make sure the lower bound increases
    old_lb_val = lower_bound(old_ips, phi, alpha, beta, docs, V)
    new_ips, new_phi = e_step(alpha, beta, docs)
    new_lb_val = lower_bound(new_ips, new_phi, alpha, beta, docs, V)

    assert_true(new_lb_val >= old_lb_val)
Exemplo n.º 3
0
def test_lower_bound():
    ips = init_ips(M, K, alpha, docs)
    actual = lower_bound(ips, phi, alpha, beta, docs, V)

    # how to test if we don't want to calculate by hand
    # 1st, <= 0
    assert_true(actual <= 0)

    # 2nd, after training several iterations
    # the value should be increasing
    # as our goal is to maximize the lower bound
    old_lb_val = actual
    alpha_, beta_ = alpha, beta
    ips_, phi_ = ips, phi
    for i in xrange(10):
        ips_, phi_ = e_step(alpha_, beta_, docs)
        alpha_, beta_ = m_step(ips_, phi_, alpha_, docs, V)

        new_lb_val = lower_bound(ips_, phi_, alpha_, beta_, docs, V)
        assert_true(new_lb_val >= old_lb_val)

        old_lb_val = new_lb_val