Exemplo n.º 1
0
        def collect_all_fn_performance(before_or_after):
            # - fn performance on pretrain data
            since = time()
            dataset_name = "Pretrain"
            random_subset_indices = np.random.choice(
                len(pretrain_training_dataset), size=(6000), replace=False)
            fn_pretrain_loader = get_loader(
                dataset=Subset(pretrain_training_dataset,
                               random_subset_indices),
                batch_size=batch_size,
                drop_last=False,
            )

            _, _, _, fn_pretrain_preds, _, fn_pretrain_losses = \
                get_fn_performance(fn_pretrain_loader, dataset_name, before_or_after)
            fn_pretrain_preds = np.hstack(fn_pretrain_preds)
            fn_pretrain_losses = np.vstack(fn_pretrain_losses)
            print(
                f"Time taken for collecting fn performance on {dataset_name} {before_or_after} updating fn weights: {time() - since} s"
            )

            # - fn performance on cotrain data
            since = time()
            dataset_name = "Cotrain_full"
            _, _, _, fn_cotrain_full_preds, _, fn_cotrain_full_losses = get_fn_performance(
                get_loader(cotrain_grasp_dataset,
                           batch_size,
                           shuffle=False,
                           drop_last=False), dataset_name, before_or_after)
            fn_cotrain_full_preds = np.hstack(fn_cotrain_full_preds)
            fn_cotrain_full_losses = np.vstack(fn_cotrain_full_losses)
            print(
                f"Time taken for collecting fitness loss on cotrain_dataset {before_or_after} updating fn weights: {time() - since} s"
            )
            return {
                f"Pretrain_{before_or_after}":
                fn_pretrain_losses.mean()
                if len(fn_pretrain_losses) != 0 else 0,
                f"cotrain_full_{before_or_after}":
                fn_cotrain_full_losses.mean()
                if len(fn_cotrain_full_losses) != 0 else 0,
                f"cotrain_old_{before_or_after}":
                fn_cotrain_full_losses[cotrain_old_indices].mean() if
                len(fn_cotrain_full_losses[cotrain_old_indices]) != 0 else 0,
                f"cotrain_new_{before_or_after}":
                fn_cotrain_full_losses[cotrain_new_indices].mean() if
                len(fn_cotrain_full_losses[cotrain_new_indices]) != 0 else 0,
            }, {
                f"FN_Preds/Pretrain_{before_or_after}":
                fn_pretrain_preds if len(fn_pretrain_preds) != 0 else 0,
                f"FN_Preds/cotrain_full_{before_or_after}":
                fn_cotrain_full_preds
                if len(fn_cotrain_full_preds) != 0 else 0,
                f"FN_Preds/cotrain_old_{before_or_after}":
                fn_cotrain_full_preds[cotrain_old_indices]
                if len(fn_cotrain_full_preds[cotrain_old_indices]) != 0 else 0,
                f"FN_Preds/cotrain_new_{before_or_after}":
                fn_cotrain_full_preds[cotrain_new_indices]
                if len(fn_cotrain_full_preds[cotrain_new_indices]) != 0 else 0,
            }
Exemplo n.º 2
0
 def get_mixed_cotrain_pretrain_loader():
     if hyperparams['balanced_sampling']:
         return get_balanced_cotrain_loader(
             cotrain_dataset=cotrain_grasp_dataset,
             pretrain_dataset=pretrain_training_dataset,
             batch_size=batch_size)
     else:
         return get_combined_loader(
             get_loader(dataset=cotrain_grasp_dataset,
                        batch_size=int(batch_size / 2)),
             get_loader(dataset=pretrain_training_dataset,
                        batch_size=int(batch_size / 2)))
Exemplo n.º 3
0
 def get_val_loader(batch_size=hyperparameters['pretrain_batch_size']):
     if hyperparameters['balanced_sampling']:
         batch_size = int(batch_size / 2)
     return get_loader(dataset=val_dataset,
                       batch_size=batch_size,
                       collate_fn=collate_fn,
                       distributed=False)
Exemplo n.º 4
0
 def get_gn_loader():
     return get_loader(object_dataset,
                       batch_size=batch_size,
                       collate_fn=lambda batch: stack(
                           [item['tsdf'] for item in batch]))