Exemplo n.º 1
0
class RLTTTPlayer(TTTPlayer):
    def __init__(self):
        self.learningAlgo = TableLearning()
        super(RLTTTPlayer, self).__init__()

    def printValues(self):
        self.learningAlgo.printValues()

    def testNextMove(self, state, i, j):
        boardCopy = list(state)
        boardCopy[3 * i + j] = self.player
        return ''.join(boardCopy)

    def makeNextMove(self):
        previousState = self.board.getBoardState()
        if self.isBoardActive():
            emptyPlaces = self.board.getEmptyBoardPlaces()
            pickOne = random.choice(emptyPlaces)
            if random.uniform(
                    0, 1) < 0.8:  # Make a random move with probability 0.2
                moveChoices = {}
                for (i, j) in emptyPlaces:
                    possibleNextState = self.testNextMove(previousState, i, j)
                    moveChoices[(i, j)] = self.learningAlgo.getBoardStateValue(
                        self.player, self.board, possibleNextState)
                pickOne = max(moveChoices, key=moveChoices.get)
            self.board.makeMove(self.player, pickOne[0], pickOne[1])
        return previousState

    def learnFromMove(self, prevBoardState):
        self.learningAlgo.learnFromMove(self.player, self.board,
                                        prevBoardState)
def playUltimateForTraining():

    learningModel = TableLearning()

    learningPlayer = RLUTTTPlayer(learningModel)

    randomPlayer = RandomUTTTPlayer()

    results, tempFileName = [], 'temp_learning.json'

    for i in range(40):

        games = GameSequence(1000,
                             learningPlayer,
                             randomPlayer,
                             BoardClass=UTTTBoard,
                             BoardDecisionClass=UTTTBoardDecision)

        games.playGamesAndGetWinPercent()

        learningPlayer.saveLearning(tempFileName)

        results.append(os.path.getsize(tempFileName))

    print(('\n'.join(map(str, results))))

    os.remove(tempFileName)
Exemplo n.º 3
0
 def __init__(self):
     self.learningAlgo = TableLearning()
     super(RLTTTPlayer, self).__init__()
Exemplo n.º 4
0
from player import RLTTTPlayer, TTTPlayer, RealTTTPlayer
from board import TTTBoardDecision, BoxState, TTTBoard
from learning import NNLearning, TableLearning
from random import randint
learningModel = TableLearning(TTTBoardDecision)
learningModel.loadLearning("FinalTableModel.json")
player1 = RLTTTPlayer(learningModel)
player2 = RealTTTPlayer()
board = TTTBoard()
BoardDecisionClass = TTTBoardDecision()

player1.startNewGame()
player2.startNewGame()
playOrder = randint(0, 1)
while board.getBoardDecision() == BoardDecisionClass.ACTIVE:
    player1.setBoard(board, BoxState.PLAYER_X)
    player2.setBoard(board, BoxState.PLAYER_O)
    if playOrder == 0 and board.getBoardDecision(
    ) == BoardDecisionClass.ACTIVE:
        pState1 = player1.makeNextMove()
    board.printBoard()
    if board.getBoardDecision() == BoardDecisionClass.ACTIVE:
        inpplay = input("Select position (1-9): ")
        pState2 = player2.makeNextMove(BoxState.PLAYER_O, int(inpplay) - 1)
    if playOrder == 1 and board.getBoardDecision(
    ) == BoardDecisionClass.ACTIVE:
        pState1 = player1.makeNextMove()
player1.finishGame()
player2.finishGame()
board.printBoard()
if board.getBoardDecision() == TTTBoardDecision.DRAW:
                    for placeOnBoard in emptyPlaces:
                        possibleNextState = self.testNextMove(
                            previousState, boardLocation, placeOnBoard)
                        moveChoices[(tuple(boardLocation), placeOnBoard
                                     )] = self.learningAlgo.getBoardStateValue(
                                         self.player, self.board,
                                         possibleNextState)
                (chosenBoard, pickOne) = max(moveChoices, key=moveChoices.get)
            else:
                chosenBoard = random.choice(activeBoardLocations)
                emptyPlaces = self.board.getEmptyBoardPlaces(chosenBoard)
                pickOne = random.choice(emptyPlaces)
            self.board.makeMove(self.player, chosenBoard, pickOne)
        return previousState

    def learnFromMove(self, prevBoardState):
        self.learningAlgo.learnFromMove(self.player, self.board,
                                        prevBoardState)

    def saveLearning(self, filename):
        self.learningAlgo.saveLearning(filename)

    def loadLearning(self, filename):
        self.learningAlgo.loadLearning(filename)


if __name__ == '__main__':
    board = UTTTBoard()
    player1 = RandomUTTTPlayer()
    player2 = RLUTTTPlayer(TableLearning(UTTTBoardDecision))