def B(k, ay, by): term1 = (beta(k) * alpha(k - 2) - alpha(k)) / (alpha(k) * alpha(k - 2)) term2 = -(2 * k - 1) / (-1.0) * \ (((beta(k) * alpha(k - 2) + beta(k - 1) * alpha(k)) /\ (alpha(k - 2) * alpha(k - 1) * alpha(k))) + \ (ay ** 2 + by ** 2)) return term1 + term2
def modify_divide_r2(k_max, moments, a, b, first_term, second_term): """ Create the modified moments for k(x,y) * Pn / ((x - a)^2 + b^2) from the modified moments for k(x, y) * Pn The first two terms must be computed explicitly from the expression for the kernel, k(x, y). See (iii) on page 35 of Diligenti, Monegato 1997 I assume use of the Legendre Polynomials """ new_list = [] # The first two terms are computed explicitly new_list.append(first_term) new_list.append(second_term) # Compute m_2 explicitly term1 = alpha(1) * (moments[0] + 2 * a * new_list[1]) term2 = -(alpha(1) * (a ** 2 + b ** 2) + beta(1)) * new_list[0] m_2 = term1 + term2 new_list.append(m_2) # Compute q_r and q_i (the real and imaginary parts of the helper # integral) q_r = initial_q_r(a, new_list) q_i = initial_q_i(b, new_list) for k in range(1, k_max): q_r.append(next_q_r(k, a, b, moments, q_i, q_r)) q_i.append(next_q_i(k, a, b, q_i, q_r)) # Compute m_j through the relation to q_j^I for k in range(3, k_max + 1): new_list.append(q_i[k] / b) return new_list
def next_q_r(k, a, b, moments, q_i, q_r): """Helper method for modify_divide_r""" term1 = alpha(k) * a * q_r[k] term2 = -alpha(k) * b * q_i[k] term3 = -beta(k) * q_r[k - 1] term4 = alpha(k) * moments[k] return term1 + term2 + term3 + term4
def modify_divide_r2(k_max, moments, a, b, first_term, second_term): """ Create the modified moments for k(x,y) * Pn / ((x - a)^2 + b^2) from the modified moments for k(x, y) * Pn The first two terms must be computed explicitly from the expression for the kernel, k(x, y). See (iii) on page 35 of Diligenti, Monegato 1997 I assume use of the Legendre Polynomials """ new_list = [] # The first two terms are computed explicitly new_list.append(first_term) new_list.append(second_term) # Compute m_2 explicitly term1 = alpha(1) * (moments[0] + 2 * a * new_list[1]) term2 = -(alpha(1) * (a**2 + b**2) + beta(1)) * new_list[0] m_2 = term1 + term2 new_list.append(m_2) # Compute q_r and q_i (the real and imaginary parts of the helper # integral) q_r = initial_q_r(a, new_list) q_i = initial_q_i(b, new_list) for k in range(1, k_max): q_r.append(next_q_r(k, a, b, moments, q_i, q_r)) q_i.append(next_q_i(k, a, b, q_i, q_r)) # Compute m_j through the relation to q_j^I for k in range(3, k_max + 1): new_list.append(q_i[k] / b) return new_list
def initial_q_r(a, new_list): """Helper method for modify_divide_r""" # Compute q_0^R and q_1^R explicitly q_r = [] q_r.append(1 / alpha(0) * new_list[1] - a * new_list[0]) q_r.append(1 / alpha(1) * new_list[2] - a * new_list[1] + beta(1) / alpha(1) * new_list[0]) return q_r
def modify_times_x_minus_a(k_max, moments, a): """ Create the modified moments for k(x,y) * (x - a) * Pn from the modified moments for k(x, y) * Pn See (i) on page 34 of Diligenti, Monegato 1997 I assume use of the Legendre Polynomials """ new_list = [] new_list.append(moments[1] - a * moments[0]) for k in range(1, k_max + 1): term1 = (1.0 / alpha(k)) * moments[k + 1] term2 = -a * moments[k] term3 = beta(k) / alpha(k) * moments[k - 1] new_moment = term1 + term2 + term3 new_list.append(new_moment) return new_list
def modify_divide_x_minus_a(k_max, moments, a, first_term): """ Create the modified moments for k(x,y) * Pn / (x - a) from the modified moments for k(x,y) * Pn The first term depends on k(x,y) and thus, the correct value must be provided See (ii) on pages 34 and 35 of Diligenti, Monegato 1997 I assume use of the Legendre polynomials """ new_list = [] new_list.append(first_term) new_list.append(a * new_list[0] + moments[0]) for k in range(1, k_max): term1 = alpha(k) * a * new_list[k] term2 = -beta(k) * new_list[k - 1] term3 = alpha(k) * moments[k] new_moment = term1 + term2 + term3 new_list.append(new_moment) return new_list
def D(k, ay, by): return - ((2 * k - 1) / (-1.0) *\ ((beta(k - 1) * beta(k - 2)) / (alpha(k - 2) * alpha(k - 1)))) - \ (beta(k - 2) / alpha(k - 2))
def C(k, ay, by): return ay + (2 * k - 1) / (-1.0) * (2 * ay / alpha(k - 1) * beta(k - 1))
def next_q_i(k, a, b, q_i, q_r): """Helper method for modify_divide_r""" term1 = alpha(k) * a * q_i[k] term2 = alpha(k) * b * q_r[k] term3 = -beta(k) * q_i[k - 1] return term1 + term2 + term3