Exemplo n.º 1
0
    def test_profile_normalization(self):
        """
        Test that the mass enclosed within r200 of the composite profile is correct
        and check that the ULDM core density is correct.
        """
        profile_args = {'log10_m_uldm': -21, 'uldm_plaw': 1/3, 'scale_nfw':True}
        mass = 1e10
        zl = 0.5
        zs = 1.5
        single_halo = SingleHalo(mass, 0.5, 0.5, 'ULDM', zl, zl, zs, None, True, profile_args, None)
        _, _, kwargs_lens, _ = single_halo.lensing_quantities(add_mass_sheet_correction=False)
        Rs_angle, _ = single_halo.halos[0].lens_cosmo.nfw_physical2angle(mass, single_halo.halos[0].c, zl)
        sigma_crit = single_halo.halos[0].lens_cosmo.sigmacrit
        r200 = single_halo.halos[0].c * Rs_angle
        cnfw_kwargs, uldm_kwargs = kwargs_lens

        M_nfw = CNFW().mass_3d_lens(r200, cnfw_kwargs['Rs'], cnfw_kwargs['alpha_Rs']*sigma_crit, cnfw_kwargs['r_core'])
        M_uldm = Uldm().mass_3d_lens(r200, uldm_kwargs['kappa_0']*sigma_crit, uldm_kwargs['theta_c'])

        npt.assert_almost_equal((M_uldm+M_nfw)/mass,1,decimal=2) # less than 1% error
        _,theta_c,kappa_0 = single_halo.halos[0].profile_args
        rho0 = Uldm().density_lens(0,uldm_kwargs['kappa_0'],
                                    uldm_kwargs['theta_c'])
        rhos = CNFW().density_lens(0,cnfw_kwargs['Rs'],
                                 cnfw_kwargs['alpha_Rs'],
                                 cnfw_kwargs['r_core'])
        rho_goal = Uldm().density_lens(0,kappa_0,theta_c)
        npt.assert_array_less(np.array([1-(rho0+rhos)/rho_goal]),np.array([0.03])) # less than 3% error
Exemplo n.º 2
0
    def _rescaled_cnfw_params(self, cnfw_params, uldm_params):
        """
        :param cnfw_params: cored NFW halo lensing params
        :param uldm_params: ULDM halo lensing params

        :return: rescaled cored NFW params to fill up the remainder of the mass budget such that
        the composite profile has the inputted virial mass.
        """

        r200 = self._c * cnfw_params['Rs']
        rho0 = Uldm().density_lens(0, uldm_params['kappa_0'],
                                   uldm_params['theta_c'])
        rhos = CNFW().density_lens(0, cnfw_params['Rs'],
                                   cnfw_params['alpha_Rs'],
                                   cnfw_params['r_core'])

        args = (r200, self.mass, cnfw_params['Rs'], cnfw_params['alpha_Rs'],
                uldm_params['kappa_0'], uldm_params['theta_c'], rho0, rhos)
        initial_guess = np.array([0.9, 1.1])
        bounds = ((0.5, 10), (0.5, 1.5))
        method = 'Nelder-Mead'
        beta, q = minimize(self._function_to_minimize,
                           initial_guess,
                           args,
                           method=method,
                           bounds=bounds,
                           tol=0.1)['x']

        if beta < 0:
            raise ValueError(
                'Negative CNFW core radius, tweak your parameters.')
        elif q < 0:
            raise ValueError(
                'Negative ULDM profile mass, tweak your parameters.')
        else:
            pass

        cnfw_params['r_core'] /= beta
        uldm_params['kappa_0'] /= q

        M_nfw = CNFW().mass_3d_lens(
            r200, cnfw_params['Rs'],
            cnfw_params['alpha_Rs'] * self._lens_cosmo.sigmacrit,
            cnfw_params['r_core'])
        M_uldm = Uldm().mass_3d_lens(
            r200, uldm_params['kappa_0'] * self._lens_cosmo.sigmacrit,
            uldm_params['theta_c'])

        if (self._args['scale_nfw']):
            # When scale_nfw is True rescale alpha_Rs to improve mass accuracy
            scale = self.mass / (M_nfw + M_uldm)
            cnfw_params['alpha_Rs'] *= scale

        return [cnfw_params, uldm_params]
Exemplo n.º 3
0
    def _constraint_mass(self, beta, q, r, m_target, rs, alpha_rs, kappa_0,
                         theta_c):
        """
        :param beta: CNFW core radius ('r_core') rescaling parameter
        :param q: ULDM core density ('kappa_0') rescaling parameter
        :param r: r200 of CNFW profile
        :param m_target: halo virial mass
        :param rs: CNFW scale radius
        :param alpha_rs: CNFW deflection angle at rs, in absence of core
        :param kappa_0: ULDM core density
        :param theta_c: ULDM core radius

        :return: Evaluated mass constraint equation for CNFW component profile
        """
        r_core = beta * rs
        sigma_crit = self.lens_cosmo.sigmacrit
        args_nfw = (r, rs, alpha_rs * sigma_crit, r_core)
        args_uldm = (r, kappa_0 * sigma_crit, theta_c)

        m_nfw = CNFW().mass_3d_lens(*args_nfw) / m_target
        m_uldm = q * Uldm().mass_3d_lens(*args_uldm) / m_target

        penalty = np.absolute(m_nfw + m_uldm - 1)
        if np.isnan(penalty):
            return 1e+12

        # penalize if not equal to zero
        return penalty
Exemplo n.º 4
0
    def setup(self):

        prof = CNFW()
        self.func = prof._F
        self.rs = 60
        self.rmax2d = 40
        self.rvir = 350
        self.rcore = 10.
        self.nfw = NFW3DCoreRejectionSampling(self.rs, self.rmax2d, self.rvir,
                                              self.rcore)
Exemplo n.º 5
0
    def __init__(self, rendering_radius, Rs, r_core_host, r200):
        """

        :param rendering_radius: the maximum projected 2D radius where halos are rendered [arcsec]
        :param Rs: the scale radius of the host dark matter halo [kpc]
        :param r_core_host: the core radius of the host dark matter halo [kpc]
        :param r200: the virial radius of the host dark matter halo [kpc]
        """

        self._cnfw_profile = CNFW()

        self.rmax2d_kpc = rendering_radius
        self._rs_kpc = Rs

        self._xmin = 1e-4
        self.xmax_2d = rendering_radius / Rs

        self.xtidal = r_core_host / Rs
        self.zmax_units_rs = r200 / Rs

        self._xmin = rendering_radius / 30 / self._rs_kpc
        self._norm = self._cnfw_profile._F(self._xmin, self.xtidal)
Exemplo n.º 6
0
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemplo n.º 7
0
 def setup(self):
     self.nfw = CNFW()
     self.nfw_e = CNFW_ELLIPSE()
Exemplo n.º 8
0
class TestCNFWELLIPSE(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.nfw = CNFW()
        self.nfw_e = CNFW_ELLIPSE()

    def test_function(self):
        x = np.array([1])
        y = np.array([2])
        Rs = 1.
        alpha_Rs = 1.
        q = 1.
        phi_G = 0
        r_core = 0.5
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        values = self.nfw.function(x, y, Rs, alpha_Rs, r_core=r_core)
        values_e = self.nfw_e.function(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(values[0], values_e[0], decimal=5)
        x = np.array([0])
        y = np.array([0])

        q = .8
        phi_G = 0
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        values = self.nfw_e.function(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(values[0], 0, decimal=4)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.nfw_e.function(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(values[0], 1.8550220596738973, decimal=5)
        npt.assert_almost_equal(values[1], 2.7684470762303537, decimal=5)
        npt.assert_almost_equal(values[2], 3.7076606717487586, decimal=5)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        Rs = 1.
        alpha_Rs = 1.
        q = 1.
        phi_G = 0
        r_core = 0.5
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.nfw.derivatives(x, y, Rs, alpha_Rs, r_core)
        f_x_e, f_y_e = self.nfw_e.derivatives(x, y, Rs, alpha_Rs, r_core, e1,
                                              e2)
        npt.assert_almost_equal(f_x[0], f_x_e[0], decimal=5)
        npt.assert_almost_equal(f_y[0], f_y_e[0], decimal=5)
        x = np.array([0])
        y = np.array([0])
        alpha_Rs = 0
        f_x, f_y = self.nfw_e.derivatives(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(f_x[0], 0, decimal=5)
        npt.assert_almost_equal(f_y[0], 0, decimal=5)

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        alpha_Rs = 1.
        q = .8
        phi_G = 0
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        values = self.nfw_e.derivatives(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(values[0][0], 0.3867896894988756, decimal=5)
        npt.assert_almost_equal(values[1][0], 1.1603690684966268, decimal=5)
        npt.assert_almost_equal(values[0][1], 0.9371571936062841, decimal=5)
        npt.assert_almost_equal(values[1][1], 0.46857859680314207, decimal=5)

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        Rs = 1.
        alpha_Rs = 1.
        q = 1.
        phi_G = 0
        r_core = 0.5
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_xy, f_yx, f_yy = self.nfw.hessian(x, y, Rs, alpha_Rs, r_core)
        f_xx_e, f_xy_e, f_yx_e, f_yy_e = self.nfw_e.hessian(
            x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(f_xx[0], f_xx_e[0], decimal=5)
        npt.assert_almost_equal(f_yy[0], f_yy_e[0], decimal=5)
        npt.assert_almost_equal(f_xy[0], f_xy_e[0], decimal=5)
        npt.assert_almost_equal(f_yx[0], f_yx_e[0], decimal=5)

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        q = .8
        phi_G = 0
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        values = self.nfw_e.hessian(x, y, Rs, alpha_Rs, r_core, e1, e2)
        npt.assert_almost_equal(values[0][0], 0.3306510620859626, decimal=5)
        npt.assert_almost_equal(values[3][0], 0.07493437759187316, decimal=5)
        npt.assert_almost_equal(values[1][0], -0.1684167189042185, decimal=5)
        npt.assert_almost_equal(values[0][1], 0.020280774837289073, decimal=5)
        npt.assert_almost_equal(values[3][1], 0.3955523575349673, decimal=5)
        npt.assert_almost_equal(values[1][1], -0.14605247788956888, decimal=5)

    def test_mass_3d(self):
        Rs = 10.
        rho0 = 1.
        r_core = 7.

        R = np.linspace(0.1 * Rs, 4 * Rs, 1000)
        alpha_Rs = self.nfw._rho2alpha(rho0, Rs, r_core)
        m3d = self.nfw.mass_3d(R, Rs, rho0, r_core)
        m3d_lens = self.nfw_e.mass_3d_lens(R, Rs, alpha_Rs, r_core)
        npt.assert_almost_equal(m3d, m3d_lens, decimal=8)
Exemplo n.º 9
0
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE':
            from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
            return GaussianKappaEllipse()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert
            return coreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class[i])
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemplo n.º 10
0
 def __init__(self):
     self.cnfw = CNFW()
     self._diff = 0.0000000001
     super(CNFW_ELLIPSE, self).__init__()
Exemplo n.º 11
0
class CNFW_ELLIPSE(LensProfileBase):
    """
    this class contains functions concerning the NFW profile

    relation are: R_200 = c * Rs
    """
    param_names = [
        'Rs', 'alpha_Rs', 'r_core', 'e1', 'e2', 'center_x', 'center_y'
    ]
    lower_limit_default = {
        'Rs': 0,
        'alpha_Rs': 0,
        'r_core': 0,
        'e1': -0.5,
        'e2': -0.5,
        'center_x': -100,
        'center_y': -100
    }
    upper_limit_default = {
        'Rs': 100,
        'alpha_Rs': 10,
        'r_core': 100,
        'e1': 0.5,
        'e2': 0.5,
        'center_x': 100,
        'center_y': 100
    }

    def __init__(self):
        self.cnfw = CNFW()
        self._diff = 0.0000000001
        super(CNFW_ELLIPSE, self).__init__()

    def function(self,
                 x,
                 y,
                 Rs,
                 alpha_Rs,
                 r_core,
                 e1,
                 e2,
                 center_x=0,
                 center_y=0):
        """
        returns double integral of NFW profile
        """
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = min(abs(1. - q), 0.99)
        xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
        R_ = np.sqrt(xt1**2 + xt2**2)
        f_ = self.cnfw.function(R_,
                                0,
                                Rs,
                                alpha_Rs,
                                r_core,
                                center_x=0,
                                center_y=0)
        return f_

    def derivatives(self,
                    x,
                    y,
                    Rs,
                    alpha_Rs,
                    r_core,
                    e1,
                    e2,
                    center_x=0,
                    center_y=0):
        """
        returns df/dx and df/dy of the function (integral of NFW)
        """
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = min(abs(1. - q), 0.99)
        xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)

        f_x_prim, f_y_prim = self.cnfw.derivatives(xt1,
                                                   xt2,
                                                   Rs,
                                                   alpha_Rs,
                                                   r_core,
                                                   center_x=0,
                                                   center_y=0)
        f_x_prim *= np.sqrt(1 - e)
        f_y_prim *= np.sqrt(1 + e)
        f_x = cos_phi * f_x_prim - sin_phi * f_y_prim
        f_y = sin_phi * f_x_prim + cos_phi * f_y_prim
        return f_x, f_y

    def hessian(self,
                x,
                y,
                Rs,
                alpha_Rs,
                r_core,
                e1,
                e2,
                center_x=0,
                center_y=0):
        """
        returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy
        """
        diff = 0.0000001
        alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, Rs, alpha_Rs,
                                                     r_core, e1, e2, center_x,
                                                     center_y)
        alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, Rs, alpha_Rs,
                                                     r_core, e1, e2, center_x,
                                                     center_y)

        alpha_ra_dx_, alpha_dec_dx_ = self.derivatives(x - diff, y, Rs,
                                                       alpha_Rs, r_core, e1,
                                                       e2, center_x, center_y)
        alpha_ra_dy_, alpha_dec_dy_ = self.derivatives(x, y - diff, Rs,
                                                       alpha_Rs, r_core, e1,
                                                       e2, center_x, center_y)

        dalpha_rara = (alpha_ra_dx - alpha_ra_dx_) / diff / 2
        dalpha_radec = (alpha_ra_dy - alpha_ra_dy_) / diff / 2
        dalpha_decra = (alpha_dec_dx - alpha_dec_dx_) / diff / 2
        dalpha_decdec = (alpha_dec_dy - alpha_dec_dy_) / diff / 2

        f_xx = dalpha_rara
        f_yy = dalpha_decdec
        f_xy = dalpha_radec
        f_yx = dalpha_decra
        return f_xx, f_yy, f_xy

    def mass_3d_lens(self, R, Rs, alpha_Rs, r_core, e1=0, e2=0):
        """
        mass enclosed a 3d sphere or radius r given a lens parameterization with angular units

        :return:
        """
        return self.cnfw.mass_3d_lens(R, Rs, alpha_Rs, r_core)

    def density_lens(self, R, Rs, alpha_Rs, r_core, e1=0, e2=0):
        """
        computes the density at 3d radius r given lens model parameterization.
        The integral in the LOS projection of this quantity results in the convergence quantity.

        """
        return self.cnfw.density_lens(R, Rs, alpha_Rs, r_core)
Exemplo n.º 12
0
class ProjectedNFW(object):
    """
    This class approximates sampling from a full 3D NFW profile by
    sampling the projected mass of a cored NFW profile in 2D, and then sampling
    the z coordinate from a cored isothermal profile. This is MUCH faster than sampling from the
    3D NFW profile, and is accurate to within a few percent.
    """
    def __init__(self, rendering_radius, Rs, r_core_host, r200):
        """

        :param rendering_radius: the maximum projected 2D radius where halos are rendered [arcsec]
        :param Rs: the scale radius of the host dark matter halo [kpc]
        :param r_core_host: the core radius of the host dark matter halo [kpc]
        :param r200: the virial radius of the host dark matter halo [kpc]
        """

        self._cnfw_profile = CNFW()

        self.rmax2d_kpc = rendering_radius
        self._rs_kpc = Rs

        self._xmin = 1e-4
        self.xmax_2d = rendering_radius / Rs

        self.xtidal = r_core_host / Rs
        self.zmax_units_rs = r200 / Rs

        self._xmin = rendering_radius / 30 / self._rs_kpc
        self._norm = self._cnfw_profile._F(self._xmin, self.xtidal)

    @classmethod
    def from_keywords_master(self, keywords_master, lens_cosmo, geometry):

        keywords = self.keywords(keywords_master, lens_cosmo, geometry)

        rendering_radius, Rs, r_core_host, r200 = keywords['rendering_radius'], \
                                                  keywords['Rs'], \
                                                  keywords['r_core'], \
                                                  keywords['host_r200']

        return ProjectedNFW(rendering_radius, Rs, r_core_host, r200)

    @staticmethod
    def keywords(keywords_master, lenscosmo, geometry):

        args_spatial = {}
        kpc_per_arcsec_zlens = geometry.kpc_per_arcsec_zlens
        zlens = lenscosmo.z_lens

        # EVERYTHING EXPRESSED IN KPC
        args_spatial['rendering_radius'] = 0.5 * keywords_master[
            'cone_opening_angle'] * kpc_per_arcsec_zlens

        if 'log_m_host' in keywords_master.keys():
            keywords_master['host_m200'] = 10**keywords_master['log_m_host']

        if 'host_m200' in keywords_master.keys():
            # EVERYTHING EXPRESSED IN KPC

            if 'host_c' not in keywords_master.keys():
                keywords_master['host_c'] = lenscosmo.NFW_concentration(
                    keywords_master['host_m200'],
                    zlens,
                    model='diemer19',
                    mdef='200c',
                    logmhm=keywords_master['log_mc'],
                    scatter=True,
                    scatter_amplitude=keywords_master['c_scatter_dex'],
                    suppression_model=keywords_master['suppression_model'],
                    kwargs_suppresion=keywords_master['kwargs_suppression'])

            if 'host_Rs' not in keywords_master.keys():
                host_Rs = lenscosmo.NFW_params_physical(
                    keywords_master['host_m200'], keywords_master['host_c'],
                    zlens)[1]
                host_r200 = host_Rs * keywords_master['host_c']
            else:
                host_Rs = keywords_master['host_Rs']
                host_r200 = keywords_master['host_Rs'] * keywords_master[
                    'host_c']

            args_spatial['Rs'] = host_Rs
            args_spatial['rmax3d'] = host_r200
            args_spatial['host_r200'] = host_Rs * keywords_master['host_c']

        else:
            raise Exception(
                'Must specify the host halo mass when rendering subhalos')

        if 'r_tidal' in keywords_master.keys():

            if isinstance(keywords_master['r_tidal'], str):
                if keywords_master['r_tidal'] == 'Rs':
                    args_spatial['r_core'] = args_spatial['Rs']
                else:
                    if keywords_master['r_tidal'][-2:] != 'Rs':
                        raise ValueError(
                            'if specifying the tidal core radius as number*Rs, the last two '
                            'letters in the string must be "Rs".')

                    scale = float(keywords_master['r_tidal'][:-2])
                    args_spatial['r_core'] = scale * args_spatial['Rs']

            else:
                args_spatial['r_core'] = keywords_master['r_tidal']

        return args_spatial

    def cdf(self, u):

        arg = u * np.arctan(self.zmax_units_rs / self.xtidal)
        return self.xtidal * np.tan(arg)

    def _projected_pdf(self, r2d_kpc):

        x = r2d_kpc / self._rs_kpc

        if isinstance(x, float) or isinstance(x, int):
            x = max(x, self._xmin)
        else:
            x[np.where(x < self._xmin)] = self._xmin

        p = self._cnfw_profile._F(x, self.xtidal) / self._norm

        return p

    def draw(self, N, rescale=1.0, center_x=0., center_y=0.):

        if N == 0:
            return [], [], [], []
        n = 0

        while True:

            _x_kpc, _y_kpc, _r2d, _r3d = self._draw_uniform(
                N, rescale, center_x, center_y)

            prob = self._projected_pdf(_r2d)
            u = np.random.uniform(size=len(prob))
            keep = np.where(u < prob)[0]

            if n == 0:
                x_kpc = _x_kpc[keep]
                y_kpc = _y_kpc[keep]
                r3d = _r3d[keep]
            else:
                x_kpc = np.append(x_kpc, _x_kpc[keep])
                y_kpc = np.append(y_kpc, _y_kpc[keep])
                r3d = np.append(r3d, _r3d[keep])

            n += len(keep)

            if n >= N:
                break

        return x_kpc[0:N], y_kpc[0:N], r3d[0:N]

    def _draw_uniform(self, N, rescale=1.0, center_x=0., center_y=0.):

        if N == 0:
            return [], [], [], []

        angle = np.random.uniform(0, 2 * np.pi, int(N))

        rmax = self.xmax_2d * rescale

        r = np.random.uniform(0, rmax**2, int(N))

        x_arcsec = r**.5 * np.cos(angle)
        y_arcsec = r**.5 * np.sin(angle)

        x_arcsec += center_x
        y_arcsec += center_y

        x_kpc, y_kpc = x_arcsec * self._rs_kpc, y_arcsec * self._rs_kpc
        u = np.random.uniform(self._xmin, 0.999999, len(x_kpc))
        z_units_rs = self.cdf(u)
        z_kpc = z_units_rs * self._rs_kpc

        return np.array(x_kpc), np.array(y_kpc), np.hypot(
            x_kpc, y_kpc), np.sqrt(x_kpc**2 + y_kpc**2 + z_kpc**2)
Exemplo n.º 13
0
    def _import_class(lens_type,
                      custom_class,
                      kwargs_interp,
                      z_lens=None,
                      z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param kwargs_interp: interpolation keyword arguments specifying the numerics.
         See description in the Interpolate() class. Only applicable for 'INTERPOL' and 'INTERPOL_SCALED' models.
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.constant_shift import Shift
            return Shift()
        elif lens_type == 'NIE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.nie_potential import NIE_POTENTIAL
            return NIE_POTENTIAL()
        elif lens_type == 'CONST_MAG':
            from lenstronomy.LensModel.Profiles.const_mag import ConstMag
            return ConstMag()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'SHEAR_REDUCED':
            from lenstronomy.LensModel.Profiles.shear import ShearReduced
            return ShearReduced()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'HESSIAN':
            from lenstronomy.LensModel.Profiles.hessian import Hessian
            return Hessian()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'PEMD':
            from lenstronomy.LensModel.Profiles.pemd import PEMD
            return PEMD()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'EPL':
            from lenstronomy.LensModel.Profiles.epl import EPL
            return EPL()
        elif lens_type == 'EPL_NUMBA':
            from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba
            return EPL_numba()
        elif lens_type == 'SPL_CORE':
            from lenstronomy.LensModel.Profiles.splcore import SPLCORE
            return SPLCORE()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'NFW_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse_cse import NFW_ELLIPSE_CSE
            return NFW_ELLIPSE_CSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'TNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.tnfw_ellipse import TNFW_ELLIPSE
            return TNFW_ELLIPSE()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'HERNQUIST_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse_cse import HernquistEllipseCSE
            return HernquistEllipseCSE()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(**kwargs_interp)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled(**kwargs_interp)
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC_CONST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConst
            return CurvedArcConst()
        elif lens_type == 'CURVED_ARC_CONST_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConstMST
            return CurvedArcConstMST()
        elif lens_type == 'CURVED_ARC_SPP':
            from lenstronomy.LensModel.Profiles.curved_arc_spp import CurvedArcSPP
            return CurvedArcSPP()
        elif lens_type == 'CURVED_ARC_SIS_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_sis_mst import CurvedArcSISMST
            return CurvedArcSISMST()
        elif lens_type == 'CURVED_ARC_SPT':
            from lenstronomy.LensModel.Profiles.curved_arc_spt import CurvedArcSPT
            return CurvedArcSPT()
        elif lens_type == 'CURVED_ARC_TAN_DIFF':
            from lenstronomy.LensModel.Profiles.curved_arc_tan_diff import CurvedArcTanDiff
            return CurvedArcTanDiff()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_EXP':
            from lenstronomy.LensModel.Profiles.cored_density_exp import CoredDensityExp
            return CoredDensityExp()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'CORED_DENSITY_EXP_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_EXP')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        elif lens_type == 'MULTIPOLE':
            from lenstronomy.LensModel.Profiles.multipole import Multipole
            return Multipole()
        elif lens_type == 'CSE':
            from lenstronomy.LensModel.Profiles.cored_steep_ellipsoid import CSE
            return CSE()
        elif lens_type == 'ElliSLICE':
            from lenstronomy.LensModel.Profiles.elliptical_density_slice import ElliSLICE
            return ElliSLICE()
        elif lens_type == 'ULDM':
            from lenstronomy.LensModel.Profiles.uldm import Uldm
            return Uldm()
        elif lens_type == 'CORED_DENSITY_ULDM_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_ULDM')
        else:
            raise ValueError(
                '%s is not a valid lens model. Supported are: %s.' %
                (lens_type, _SUPPORTED_MODELS))
Exemplo n.º 14
0
    def setup(self):

        self.cn = CNFW()
        self.n = NFW()
Exemplo n.º 15
0
class Testcnfw(object):
    """
    tests the Gaussian methods
    """
    def setup(self):

        self.cn = CNFW()
        self.n = NFW()

    def test_pot(self):

        pot1 = self.cn.function(2, 0, 1, 1, 0.5)
        pot2 = self.n.function(2, 0, 1, 1)

        npt.assert_almost_equal(pot1, pot2)

    def _kappa_integrand(self, x, y, Rs, m0, r_core):

        return 2 * np.pi * x * self.cn.density_2d(x, y, Rs, m0, r_core)

    def test_derivatives(self):

        Rs = 10.
        rho0 = 1.
        r_core = 7.

        R = np.linspace(0.1 * Rs, 4 * Rs, 1000)

        alpha = self.cn.cnfwAlpha(R, Rs, rho0, r_core, R, 0)[0]

        alpha_theory = self.cn.mass_2d(R, Rs, rho0, r_core) / np.pi / R

        theta_Rs = self.cn._rho2alpha(rho0, Rs, r_core)
        alpha_derivatives = self.cn.derivatives(R, 0, Rs, theta_Rs, r_core)[0]

        npt.assert_almost_equal(alpha / alpha_theory, 1)
        npt.assert_almost_equal(alpha / alpha_derivatives, 1)

    def test_mproj(self):

        Rs = 10.
        r_core = 0.7 * Rs
        Rmax = np.linspace(0.6 * Rs, 1.1 * Rs, 1000)
        dr = Rmax[1] - Rmax[0]
        m0 = 1

        m2d = self.cn.mass_2d(Rmax, Rs, m0, r_core)
        integrand = np.gradient(m2d, dr)
        kappa_integrand = self._kappa_integrand(Rmax, 0, Rs, m0, r_core)

        mean_diff = np.absolute(kappa_integrand - integrand) * len(Rmax)**-1

        npt.assert_almost_equal(mean_diff, 0, decimal=3)

    def test_GF(self):

        x_array = np.array([0.5, 0.8, 1.2])
        b = 0.7
        Garray = self.cn._G(x_array, b)
        Farray = self.cn._F(x_array, b)
        for i in range(0, len(x_array)):
            npt.assert_almost_equal(Farray[i], self.cn._F(x_array[i], b))
            npt.assert_almost_equal(Garray[i], self.cn._G(x_array[i], b))

    def test_gamma(self):

        Rs = 10.
        rho0 = 1.
        r_core = 0.7 * Rs

        R = np.array([0.5 * Rs, 0.8 * Rs, 1.1 * Rs])

        g1_array, g2_array = self.cn.cnfwGamma(R, Rs, rho0, r_core, R,
                                               0.6 * Rs)
        for i in range(0, len(R)):
            g1, g2 = self.cn.cnfwGamma(R[i], Rs, rho0, r_core, R[i], 0.6 * Rs)
            npt.assert_almost_equal(g1_array[i], g1)
            npt.assert_almost_equal(g2_array[i], g2)

    def test_rho_angle_transform(self):

        Rs = float(10)
        rho0 = float(1)
        r_core = float(7)

        theta_Rs = self.cn._rho2alpha(rho0, Rs, r_core)
        theta_rs_2 = self.cn.cnfwAlpha(Rs, Rs, rho0, r_core, Rs, 0)[0]

        npt.assert_almost_equal(theta_Rs * theta_rs_2**-1, 1)

        rho0_2 = self.cn._alpha2rho0(theta_Rs, Rs, r_core)
        npt.assert_almost_equal(rho0, rho0_2)
Exemplo n.º 16
0
class Testcnfw(object):
    """
    tests the Gaussian methods
    """
    def setup(self):

        self.cn = CNFW()
        self.n = NFW()

    def test_pot(self):
        # this test requires that the CNFW profile with a very small core results in the potential of the NFW profile
        pot1 = self.cn.function(x=2, y=0, Rs=1, alpha_Rs=1, r_core=0.001)
        pot2 = self.n.function(x=2, y=0, Rs=1, alpha_Rs=1)
        npt.assert_almost_equal(pot1 / pot2, 1, decimal=3)

    def _kappa_integrand(self, x, y, Rs, m0, r_core):

        return 2 * np.pi * x * self.cn.density_2d(x, y, Rs, m0, r_core)

    def test_derivatives(self):

        Rs = 10.
        rho0 = 1.
        r_core = 7.

        R = np.linspace(0.1 * Rs, 4 * Rs, 1000)

        alpha_Rs = self.cn._rho2alpha(rho0, Rs, r_core)
        alpha = self.cn.alpha_r(R, Rs, rho0, r_core)
        alpha_theory = self.cn.mass_2d(R, Rs, rho0, r_core) / np.pi / R
        alpha_derivatives = self.cn.derivatives(R, 0, Rs, alpha_Rs, r_core)[0]

        npt.assert_almost_equal(alpha_derivatives / alpha_theory, 1)
        npt.assert_almost_equal(alpha / alpha_theory, 1)
        npt.assert_almost_equal(alpha / alpha_derivatives, 1)

    def test_mass_3d(self):
        Rs = 10.
        rho0 = 1.
        r_core = 7.

        R = np.linspace(0.1 * Rs, 4 * Rs, 1000)
        alpha_Rs = self.cn._rho2alpha(rho0, Rs, r_core)
        m3d = self.cn.mass_3d(R, Rs, rho0, r_core)
        m3d_lens = self.cn.mass_3d_lens(R, Rs, alpha_Rs, r_core)
        npt.assert_almost_equal(m3d, m3d_lens, decimal=8)

    def test_mproj(self):

        Rs = 10.
        r_core = 0.7 * Rs
        Rmax = np.linspace(0.6 * Rs, 1.1 * Rs, 1000)
        dr = Rmax[1] - Rmax[0]
        m0 = 1

        m2d = self.cn.mass_2d(Rmax, Rs, m0, r_core)
        integrand = np.gradient(m2d, dr)
        kappa_integrand = self._kappa_integrand(Rmax, 0, Rs, m0, r_core)

        mean_diff = np.absolute(kappa_integrand - integrand) * len(Rmax)**-1

        npt.assert_almost_equal(mean_diff, 0, decimal=3)

    def test_GF(self):

        x_array = np.array([0.5, 0.8, 1.2])
        b = 0.7
        Garray = self.cn._G(x_array, b)
        Farray = self.cn._F(x_array, b)
        for i in range(0, len(x_array)):
            npt.assert_almost_equal(Farray[i], self.cn._F(x_array[i], b))
            npt.assert_almost_equal(Garray[i], self.cn._G(x_array[i], b))

    def test_gamma(self):

        Rs = 10.
        rho0 = 1.
        r_core = 0.7 * Rs

        R = np.array([0.5 * Rs, 0.8 * Rs, 1.1 * Rs])

        g1_array, g2_array = self.cn.cnfwGamma(R, Rs, rho0, r_core, R,
                                               0.6 * Rs)
        for i in range(0, len(R)):
            g1, g2 = self.cn.cnfwGamma(R[i], Rs, rho0, r_core, R[i], 0.6 * Rs)
            npt.assert_almost_equal(g1_array[i], g1)
            npt.assert_almost_equal(g2_array[i], g2)