Exemplo n.º 1
0
def plot_chain(chain_list):
    """
    a fuction to plot chain_list of fitting results
    :param chain_list: chain_list of fitting results
    :return:plot
    """
    for i in range(len(chain_list)):
        f, axes = plot_chain_list(chain_list, index=i)
    f.show()
Exemplo n.º 2
0
 def run_diag(self, diag_list=None, show_plot=True):
     """
     Plot the fitting particles and show how they converge. 
     
     Parameter
     --------
         diag_list: None or list of int, e.g., [0, 1]
             Defines which chains to show?
     """
     from lenstronomy.Plots import chain_plot
     if diag_list is None:
         for i in range(len(self.chain_list)):
             f, axes = chain_plot.plot_chain_list(self.chain_list, i)
     else:
         for i in diag_list:
             f, axes = chain_plot.plot_chain_list(self.chain_list, i)
     if show_plot == True:
         plt.show()
     else:
         plt.close()
Exemplo n.º 3
0
    def test_chain_list(self):
        param = ['a', 'b']

        X2_list = [1, 1, 2]
        pos_list = [[1, 0], [2, 0], [3, 0]]
        vel_list = [[-1, 0], [0, 0], [1, 0]]
        chain = X2_list, pos_list, vel_list, None

        samples_mcmc = np.random.random((10, 1000))
        dist_mcmc = np.random.random(1000)

        chain_list = [['PSO', chain, param],
                      ['EMCEE', samples_mcmc, param, dist_mcmc],
                      ['MULTINEST', samples_mcmc, param, dist_mcmc]]

        chain_plot.plot_chain_list(chain_list, index=0)
        plt.close()
        chain_plot.plot_chain_list(chain_list, index=1, num_average=10)
        plt.close()
        chain_plot.plot_chain_list(chain_list, index=2, num_average=10)
        plt.close()
    fixed_lens, fixed_source, fixed_lens_light, fixed_ps, fixed_cosmo = fix_setting
    labels_new = [r"$\gamma$", r"$D_{\Delta t}$", "H$_0$"]
    modelPlot = ModelPlot(multi_band_list,
                          kwargs_model,
                          kwargs_result,
                          arrow_size=0.02,
                          cmap_string="gist_heat")
    f, axes = modelPlot.plot_main()
    f.show()
    # f, axes = modelPlot.plot_separate()
    # f.show()
    # f, axes = modelPlot.plot_subtract_from_data_all()
    # f.show()

    for i in range(len(chain_list)):
        chain_plot.plot_chain_list(chain_list, i)
    plt.show()

    truths = [para_s[0][0]['gamma'], TD_distance, 73.907]
    plot = corner.corner(
        mcmc_new_list,
        labels=labels_new,
        show_titles=
        True,  #range= [[0.8,1.5],[1,3],[0,1],[0, 1],[2000,5000],[20,100]], 
        quantiles=[0.16, 0.5, 0.84],
        truths=truths,
        title_kwargs={"fontsize": 15},
        label_kwargs={"fontsize": 25},
        levels=1.0 - np.exp(-0.5 * np.array([1., 2.])**2))
    plt.show()
Exemplo n.º 5
0
 def test_raise(self):
     with self.assertRaises(ValueError):
         chain_plot.plot_chain_list(chain_list=[['WRONG']], index=0)
Exemplo n.º 6
0
        start_time = time.time()
        chain_list_pso = fitting_seq.fit_sequence(fitting_kwargs_list)
        kwargs_result = fitting_seq.best_fit()
        end_time = time.time()
        print(end_time - start_time, 'total time needed for computation')
        print(
            '============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ '
        )

        #%%
        kwargs_result = fitting_seq.best_fit(bijective=True)

        from lenstronomy.Plots import chain_plot as chain_plot
        for i in range(len(chain_list_pso)):
            chain_plot.plot_chain_list(chain_list_pso, i)
            plt.close()

        #and now we run the MCMC
        fitting_kwargs_list = [[
            'MCMC', {
                'n_burn': steps[0],
                'n_run': steps[1],
                'walkerRatio': 30,
                'sigma_scale': 0.1
            }
        ]]
        chain_list_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list)
        kwargs_result = fitting_seq.best_fit()

        args_result = fitting_seq.param_class.kwargs2args(**kwargs_result)
Exemplo n.º 7
0
        # #source_result, image_host, ps_result, image_ps, _ =best_fit
        # source_result, ps_result, image_ps, image_host, _=best_fit
        
        best_fit, chain_list_result, trans_paras, material = result
        source_result, image_host, ps_result, image_ps, _ = best_fit        
        chain_list, _ = chain_list_result
        multi_band_list, kwargs_model, kwargs_result, QSO_msk, kwargs_fixed_source, kwargs_fixed_ps, kwargs_constraints, kwargs_numerics, classes = material
        error_map = multi_band_list[0][0]['noise_map']
        phi0, q0 = param_util.ellipticity2phi_q(source_result[0]['e1'], source_result[0]['e2'])
        for i in range(len(kwargs_result['kwargs_source'])):
            print (ID, run, format(i), round(kwargs_result['kwargs_source'][i]['R_sersic'],2), round(kwargs_result['kwargs_source'][i]['n_sersic'],2), round(q0,2))
        print (error_map.shape)    

from lenstronomy.Plots import chain_plot
for i in range(len(chain_list)):
    f, axes = chain_plot.plot_chain_list(chain_list,i)
    plt.show()

agn_image = pyfits.getdata('./allscience/l{0}_{1}_cutout.fits'.format(ID,fr))
if len(image_host) == 1:
    host = image_host[0]
    label = ['data', 'QSO', 'host', 'model', 'normalized residual']
elif len(image_host) >1:
    host = np.zeros_like(image_host[0])
    for i in range(len(image_host)):
        host += image_host[i]
    label = ['data', 'QSO', 'host as {0} components'.format(i+1), 'model', 'normalized residual']  #Print the numbers
        
flux_list = [agn_image, image_ps[0], host, error_map]
fig = total_compare(label_list = label, flux_list = flux_list, target_ID = ID, pix_sz=pix_sz, zp = zp,
                    plot_compare = False, msk_image = QSO_msk)
Exemplo n.º 8
0
def plot_mcmc_chain(chain_list_mcmc, save_path):
    fig, ax = chain_plot.plot_chain_list(chain_list_mcmc)
    fig.savefig(save_path, dpi=100)
    plt.close()
Exemplo n.º 9
0
def fit_qso(QSO_im, psf_ave, psf_std=None, source_params=None,ps_param=None, background_rms=0.04, pix_sz = 0.168,
            exp_time = 300., fix_n=None, image_plot = True, corner_plot=True, supersampling_factor = 2, 
            flux_ratio_plot=False, deep_seed = False, fixcenter = False, QSO_msk=None, QSO_std=None,
            tag = None, no_MCMC= False, pltshow = 1, return_Chisq = False, dump_result = False, pso_diag=False):
    '''
    A quick fit for the QSO image with (so far) single sersice + one PSF. The input psf noise is optional.
    
    Parameter
    --------
        QSO_im: An array of the QSO image.
        psf_ave: The psf image.
        psf_std: The psf noise, optional.
        source_params: The prior for the source. Default is given. If [], means no Sersic light.
        background_rms: default as 0.04
        exp_time: default at 2400.
        deep_seed: if Ture, more mcmc steps will be performed.
        tag: The name tag for save the plot
            
    Return
    --------
        Will output the fitted image (Set image_plot = True), the corner_plot and the flux_ratio_plot.
        source_result, ps_result, image_ps, image_host
    
    To do
    --------
        
    '''
    # data specifics need to set up based on the data situation
    background_rms = background_rms  #  background noise per pixel (Gaussian)
    exp_time = exp_time  #  exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
    numPix = len(QSO_im)  #  cutout pixel size
    deltaPix = pix_sz
    psf_type = 'PIXEL'  # 'gaussian', 'pixel', 'NONE'
    kernel = psf_ave

    kwargs_numerics = {'supersampling_factor': supersampling_factor, 'supersampling_convolution': False} 
    
    if source_params is None:
        # here are the options for the host galaxy fitting
        fixed_source = []
        kwargs_source_init = []
        kwargs_source_sigma = []
        kwargs_lower_source = []
        kwargs_upper_source = []
        
        if fix_n == None:
            fixed_source.append({})  # we fix the Sersic index to n=1 (exponential)
            kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': 2., 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.})
            kwargs_source_sigma.append({'n_sersic': 0.5, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1})
            kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': 0.3, 'center_x': -10, 'center_y': -10})
            kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3., 'n_sersic': 7., 'center_x': 10, 'center_y': 10})
        elif fix_n is not None:
            fixed_source.append({'n_sersic': fix_n})
            kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': fix_n, 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.})
            kwargs_source_sigma.append({'n_sersic': 0.001, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1})
            kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': fix_n, 'center_x': -10, 'center_y': -10})
            kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3, 'n_sersic': fix_n, 'center_x': 10, 'center_y': 10})
        source_params = [kwargs_source_init, kwargs_source_sigma, fixed_source, kwargs_lower_source, kwargs_upper_source]
    else:
        source_params = source_params
    
    if ps_param is None:
        center_x = 0.0
        center_y = 0.0
        point_amp = QSO_im.sum()/2.
        fixed_ps = [{}]
        kwargs_ps = [{'ra_image': [center_x], 'dec_image': [center_y], 'point_amp': [point_amp]}]
        kwargs_ps_init = kwargs_ps
        kwargs_ps_sigma = [{'ra_image': [0.05], 'dec_image': [0.05]}]
        kwargs_lower_ps = [{'ra_image': [-0.6], 'dec_image': [-0.6]}]
        kwargs_upper_ps = [{'ra_image': [0.6], 'dec_image': [0.6]}]
        ps_param = [kwargs_ps_init, kwargs_ps_sigma, fixed_ps, kwargs_lower_ps, kwargs_upper_ps]
    else:
        ps_param = ps_param
    
    #==============================================================================
    #Doing the QSO fitting 
    #==============================================================================
    kwargs_data = sim_util.data_configure_simple(numPix, deltaPix, exp_time, background_rms, inverse=True)
    data_class = ImageData(**kwargs_data)
    kwargs_psf = {'psf_type': psf_type, 'kernel_point_source': kernel}
    psf_class = PSF(**kwargs_psf)
    data_class.update_data(QSO_im)
    
    point_source_list = ['UNLENSED'] * len(ps_param[0])
    pointSource = PointSource(point_source_type_list=point_source_list)
    
    if fixcenter == False:
        kwargs_constraints = {'num_point_source_list': [1] * len(ps_param[0])
                              }
    elif fixcenter == True:
        kwargs_constraints = {'joint_source_with_point_source': [[i, i] for i in range(len(ps_param[0]))],
                              'num_point_source_list': [1] * len(ps_param[0])
                              }
    
    
    if source_params == []:   #fitting image as Point source only.
        kwargs_params = {'point_source_model': ps_param}
        lightModel = None
        kwargs_model = {'point_source_model_list': point_source_list }
        imageModel = ImageModel(data_class, psf_class, point_source_class=pointSource, kwargs_numerics=kwargs_numerics)
        kwargs_likelihood = {'check_bounds': True,  #Set the bonds, if exceed, reutrn "penalty"
                             'image_likelihood_mask_list': [QSO_msk]
                     }
    elif source_params != []:
        kwargs_params = {'source_model': source_params,
                 'point_source_model': ps_param}

        light_model_list = ['SERSIC_ELLIPSE'] * len(source_params[0])
        lightModel = LightModel(light_model_list=light_model_list)
        kwargs_model = { 'source_light_model_list': light_model_list,
                        'point_source_model_list': point_source_list
                        }
        imageModel = ImageModel(data_class, psf_class, source_model_class=lightModel,
                                point_source_class=pointSource, kwargs_numerics=kwargs_numerics)
        # numerical options and fitting sequences
        kwargs_likelihood = {'check_bounds': True,  #Set the bonds, if exceed, reutrn "penalty"
                             'source_marg': False,  #In likelihood_module.LikelihoodModule -- whether to fully invert the covariance matrix for marginalization
                              'check_positive_flux': True, 
                              'image_likelihood_mask_list': [QSO_msk]
                             }
    
    kwargs_data['image_data'] = QSO_im
    if QSO_std is not None:
        kwargs_data['noise_map'] = QSO_std
    
    if psf_std is not None:
        kwargs_psf['psf_error_map'] = psf_std
    image_band = [kwargs_data, kwargs_psf, kwargs_numerics]
    multi_band_list = [image_band]

    kwargs_data_joint = {'multi_band_list': multi_band_list, 'multi_band_type': 'multi-linear'}  # 'single-band', 'multi-linear', 'joint-linear'
    fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params)
    
    if deep_seed == False:
        fitting_kwargs_list = [
             ['PSO', {'sigma_scale': 0.8, 'n_particles': 100, 'n_iterations': 60}],
             ['MCMC', {'n_burn': 10, 'n_run': 10, 'walkerRatio': 50, 'sigma_scale': .1}]
            ]
    elif deep_seed == True:
         fitting_kwargs_list = [
             ['PSO', {'sigma_scale': 0.8, 'n_particles': 250, 'n_iterations': 250}],
             ['MCMC', {'n_burn': 100, 'n_run': 200, 'walkerRatio': 10, 'sigma_scale': .1}]
            ]
    if no_MCMC == True:
        fitting_kwargs_list = [fitting_kwargs_list[0],
                               ]        

    start_time = time.time()
    chain_list = fitting_seq.fit_sequence(fitting_kwargs_list)
    kwargs_result = fitting_seq.best_fit()
    ps_result = kwargs_result['kwargs_ps']
    source_result = kwargs_result['kwargs_source']
    if no_MCMC == False:
        sampler_type, samples_mcmc, param_mcmc, dist_mcmc  = chain_list[1]    
    
    end_time = time.time()
    print(end_time - start_time, 'total time needed for computation')
    print('============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ ')
    imageLinearFit = ImageLinearFit(data_class=data_class, psf_class=psf_class,
                                    source_model_class=lightModel,
                                    point_source_class=pointSource, 
                                    kwargs_numerics=kwargs_numerics)    
    image_reconstructed, error_map, _, _ = imageLinearFit.image_linear_solve(kwargs_source=source_result, kwargs_ps=ps_result)
    # this is the linear inversion. The kwargs will be updated afterwards
    modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result,
                          arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=[QSO_msk])
    image_host = []  #!!! The linear_solver before and after LensModelPlot could have different result for very faint sources.
    for i in range(len(source_result)):
        image_host.append(imageModel.source_surface_brightness(source_result, de_lensed=True,unconvolved=False,k=i))
    
    image_ps = []
    for i in range(len(ps_result)):
        image_ps.append(imageModel.point_source(ps_result, k = i))
    
    if pso_diag == True:
        f, axes = chain_plot.plot_chain_list(chain_list,0)
        if pltshow == 0:
            plt.close()
        else:
            plt.show()

    # let's plot the output of the PSO minimizer
    reduced_Chisq =  imageLinearFit.reduced_chi2(image_reconstructed, error_map)
    if image_plot:
        f, axes = plt.subplots(3, 3, figsize=(16, 16), sharex=False, sharey=False)
        modelPlot.data_plot(ax=axes[0,0], text="Data")
        modelPlot.model_plot(ax=axes[0,1])
        modelPlot.normalized_residual_plot(ax=axes[0,2], v_min=-6, v_max=6)
        
        modelPlot.decomposition_plot(ax=axes[1,0], text='Host galaxy', source_add=True, unconvolved=True)
        modelPlot.decomposition_plot(ax=axes[1,1], text='Host galaxy convolved', source_add=True)
        modelPlot.decomposition_plot(ax=axes[1,2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True)
        
        modelPlot.subtract_from_data_plot(ax=axes[2,0], text='Data - Point Source', point_source_add=True)
        modelPlot.subtract_from_data_plot(ax=axes[2,1], text='Data - host galaxy', source_add=True)
        modelPlot.subtract_from_data_plot(ax=axes[2,2], text='Data - host galaxy - Point Source', source_add=True, point_source_add=True)
        
        f.tight_layout()
        #f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0., hspace=0.05)
        if tag is not None:
            f.savefig('{0}_fitted_image.pdf'.format(tag))
        if pltshow == 0:
            plt.close()
        else:
            plt.show()
        
    if corner_plot==True and no_MCMC==False:
        # here the (non-converged) MCMC chain of the non-linear parameters
        if not samples_mcmc == []:
           n, num_param = np.shape(samples_mcmc)
           plot = corner.corner(samples_mcmc, labels=param_mcmc, show_titles=True)
           if tag is not None:
               plot.savefig('{0}_para_corner.pdf'.format(tag))
           plt.close()               
           # if pltshow == 0:
           #     plt.close()
           # else:
           #     plt.show()
        
    if flux_ratio_plot==True and no_MCMC==False:
        param = Param(kwargs_model, kwargs_fixed_source=source_params[2], kwargs_fixed_ps=ps_param[2], **kwargs_constraints)
        mcmc_new_list = []
        if len(ps_param[2]) == 1:
            labels_new = ["Quasar flux"] +  ["host{0} flux".format(i) for i in range(len(source_params[0]))]
        else:
            labels_new = ["Quasar{0} flux".format(i) for i in range(len(ps_param[2]))] +  ["host{0} flux".format(i) for i in range(len(source_params[0]))]
        if len(samples_mcmc) > 10000:
            trans_steps = [len(samples_mcmc)-10000, len(samples_mcmc)]
        else:
            trans_steps = [0, len(samples_mcmc)]
        for i in range(trans_steps[0], trans_steps[1]):
            kwargs_out = param.args2kwargs(samples_mcmc[i])
            kwargs_light_source_out = kwargs_out['kwargs_source']
            kwargs_ps_out =  kwargs_out['kwargs_ps']
            image_reconstructed, _, _, _ = imageLinearFit.image_linear_solve(kwargs_source=kwargs_light_source_out, kwargs_ps=kwargs_ps_out)
            flux_quasar = []
            if len(ps_param[0]) == 1:
                image_ps_j = imageModel.point_source(kwargs_ps_out)
                flux_quasar.append(np.sum(image_ps_j))  
            else:    
                for j in range(len(ps_param[0])):
                    image_ps_j = imageModel.point_source(kwargs_ps_out, k=j)
                    flux_quasar.append(np.sum(image_ps_j))
            fluxs = []
            for j in range(len(source_params[0])):
                image_j = imageModel.source_surface_brightness(kwargs_light_source_out,unconvolved= False, k=j)
                fluxs.append(np.sum(image_j))
            mcmc_new_list.append(flux_quasar + fluxs )
            if int(i/1000) > int((i-1)/1000) :
                print(len(samples_mcmc), "MCMC samplers in total, finished translate:", i )
        plot = corner.corner(mcmc_new_list, labels=labels_new, show_titles=True)
        if tag is not None:
            plot.savefig('{0}_HOSTvsQSO_corner.pdf'.format(tag))
        if pltshow == 0:
            plt.close()
        else:
            plt.show()
    if QSO_std is None:
        noise_map = np.sqrt(data_class.C_D+np.abs(error_map))
    else:
        noise_map = np.sqrt(QSO_std**2+np.abs(error_map))
    if dump_result == True:
        if flux_ratio_plot==True and no_MCMC==False:
            trans_paras = [mcmc_new_list, labels_new, 'mcmc_new_list, labels_new']
        else:
            trans_paras = []
        picklename= tag + '.pkl'
        best_fit = [source_result, image_host, ps_result, image_ps,'source_result, image_host, ps_result, image_ps']
        chain_list_result = [chain_list, 'chain_list']
        kwargs_fixed_source=source_params[2]
        kwargs_fixed_ps=ps_param[2]
        classes = data_class, psf_class, lightModel, pointSource
        material = multi_band_list, kwargs_model, kwargs_result, QSO_msk, kwargs_fixed_source, kwargs_fixed_ps, kwargs_constraints, kwargs_numerics, classes
        pickle.dump([best_fit, chain_list_result, trans_paras, material], open(picklename, 'wb'))
    if return_Chisq == False:
        return source_result, ps_result, image_ps, image_host, noise_map
    elif return_Chisq == True:
        return source_result, ps_result, image_ps, image_host, noise_map, reduced_Chisq
Exemplo n.º 10
0
def fit_galaxy(galaxy_im, psf_ave, psf_std=None, source_params=None, background_rms=0.04, pix_sz = 0.08,
            exp_time = 300., fix_n=None, image_plot = True, corner_plot=True,
            deep_seed = False, galaxy_msk=None, galaxy_std=None, flux_corner_plot = False,
            tag = None, no_MCMC= False, pltshow = 1, return_Chisq = False, dump_result = False, pso_diag=False):
    '''
    A quick fit for the QSO image with (so far) single sersice + one PSF. The input psf noise is optional.
    
    Parameter
    --------
        galaxy_im: An array of the QSO image.
        psf_ave: The psf image.
        psf_std: The psf noise, optional.
        source_params: The prior for the source. Default is given.
        background_rms: default as 0.04
        exp_time: default at 2400.
        deep_seed: if Ture, more mcmc steps will be performed.
        tag: The name tag for save the plot
            
    Return
    --------
        Will output the fitted image (Set image_plot = True), the corner_plot and the flux_ratio_plot.
        source_result, ps_result, image_ps, image_host
    
    To do
    --------
        
    '''
    # data specifics need to set up based on the data situation
    background_rms = background_rms  #  background noise per pixel (Gaussian)
    exp_time = exp_time  #  exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
    numPix = len(galaxy_im)  #  cutout pixel size
    deltaPix = pix_sz
    if psf_ave is not None:
        psf_type = 'PIXEL'  # 'gaussian', 'pixel', 'NONE'
        kernel = psf_ave
    
#    if psf_std is not None:
#        kwargs_numerics = {'subgrid_res': 1, 'psf_error_map': True}     #Turn on the PSF error map
#    else: 
    kwargs_numerics = {'supersampling_factor': 1, 'supersampling_convolution': False}
        
    if source_params is None:
        # here are the options for the host galaxy fitting
        fixed_source = []
        kwargs_source_init = []
        kwargs_source_sigma = []
        kwargs_lower_source = []
        kwargs_upper_source = []
        # Disk component, as modelled by an elliptical Sersic profile
        if fix_n == None:
            fixed_source.append({})  # we fix the Sersic index to n=1 (exponential)
            kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': 2., 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.})
            kwargs_source_sigma.append({'n_sersic': 0.5, 'R_sersic': 0.1, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1})
            kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.01, 'n_sersic': 0.3, 'center_x': -10, 'center_y': -10})
            kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3., 'n_sersic': 7., 'center_x': 10, 'center_y': 10})
        elif fix_n is not None:
            fixed_source.append({'n_sersic': fix_n})
            kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': fix_n, 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.})
            kwargs_source_sigma.append({'n_sersic': 0.001, 'R_sersic': 0.1, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1})
            kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.01, 'n_sersic': fix_n, 'center_x': -10, 'center_y': -10})
            kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3, 'n_sersic': fix_n, 'center_x': 10, 'center_y': 10})
        source_params = [kwargs_source_init, kwargs_source_sigma, fixed_source, kwargs_lower_source, kwargs_upper_source]
    else:
        source_params = source_params
    kwargs_params = {'source_model': source_params}
    
    #==============================================================================
    #Doing the QSO fitting 
    #==============================================================================
    kwargs_data = sim_util.data_configure_simple(numPix, deltaPix, exp_time, background_rms, inverse=True)
    data_class = ImageData(**kwargs_data)
    if psf_ave is not None:
        kwargs_psf = {'psf_type': psf_type, 'kernel_point_source': kernel}
    else:
        kwargs_psf =  {'psf_type': 'NONE'}
    
    psf_class = PSF(**kwargs_psf)
    data_class.update_data(galaxy_im)
    
    light_model_list = ['SERSIC_ELLIPSE'] * len(source_params[0])
    lightModel = LightModel(light_model_list=light_model_list)
    
    kwargs_model = { 'source_light_model_list': light_model_list}
    # numerical options and fitting sequences
    kwargs_constraints = {}
    
    kwargs_likelihood = {'check_bounds': True,  #Set the bonds, if exceed, reutrn "penalty"
                         'source_marg': False,  #In likelihood_module.LikelihoodModule -- whether to fully invert the covariance matrix for marginalization
                          'check_positive_flux': True,       
                          'image_likelihood_mask_list': [galaxy_msk]
                         }
    kwargs_data['image_data'] = galaxy_im
    if galaxy_std is not None:
        kwargs_data['noise_map'] = galaxy_std
    if psf_std is not None:
        kwargs_psf['psf_error_map'] = psf_std
                  
    image_band = [kwargs_data, kwargs_psf, kwargs_numerics]
    multi_band_list = [image_band]
    
    kwargs_data_joint = {'multi_band_list': multi_band_list, 'multi_band_type': 'multi-linear'}  # 'single-band', 'multi-linear', 'joint-linear'
    fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params)
    
    if deep_seed == False:
        fitting_kwargs_list = [
            ['PSO', {'sigma_scale': 0.8, 'n_particles': 50, 'n_iterations': 50}],
            ['MCMC', {'n_burn': 10, 'n_run': 10, 'walkerRatio': 50, 'sigma_scale': .1}]
            ]            
    elif deep_seed == True:
         fitting_kwargs_list = [
            ['PSO', {'sigma_scale': 0.8, 'n_particles': 100, 'n_iterations': 80}],
            ['MCMC', {'n_burn': 10, 'n_run': 15, 'walkerRatio': 50, 'sigma_scale': .1}]
            ]
    elif deep_seed == 'very_deep':
         fitting_kwargs_list = [
            ['PSO', {'sigma_scale': 0.8, 'n_particles': 150, 'n_iterations': 150}],
            ['MCMC', {'n_burn': 10, 'n_run': 20, 'walkerRatio': 50, 'sigma_scale': .1}]
            ]
    if no_MCMC == True:
        fitting_kwargs_list = [fitting_kwargs_list[0],
                               ]        
    
    start_time = time.time()
    chain_list = fitting_seq.fit_sequence(fitting_kwargs_list)
    kwargs_result = fitting_seq.best_fit()
    ps_result = kwargs_result['kwargs_ps']
    source_result = kwargs_result['kwargs_source']
    
    if no_MCMC == False:
        sampler_type, samples_mcmc, param_mcmc, dist_mcmc  = chain_list[1]      
    
#    chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list)
#    lens_result, source_result, lens_light_result, ps_result, cosmo_temp = fitting_seq.best_fit()
    end_time = time.time()
    print(end_time - start_time, 'total time needed for computation')
    print('============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ ')
    # this is the linear inversion. The kwargs will be updated afterwards
    imageModel = ImageModel(data_class, psf_class, source_model_class=lightModel,kwargs_numerics=kwargs_numerics)
    imageLinearFit = ImageLinearFit(data_class=data_class, psf_class=psf_class,
                                       source_model_class=lightModel,
                                       kwargs_numerics=kwargs_numerics)    
    image_reconstructed, error_map, _, _ = imageLinearFit.image_linear_solve(kwargs_source=source_result, kwargs_ps=ps_result)
#    image_host = []   #!!! The linear_solver before and after could have different result for very faint sources.
#    for i in range(len(source_result)):
#        image_host_i = imageModel.source_surface_brightness(source_result,de_lensed=True,unconvolved=False, k=i)
#        print("image_host_i", source_result[i])
#        print("total flux", image_host_i.sum())
#        image_host.append(image_host_i)  
        
    # let's plot the output of the PSO minimizer
    modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result,
                          arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=[galaxy_msk])  
    
    if pso_diag == True:
        f, axes = chain_plot.plot_chain_list(chain_list,0)
        if pltshow == 0:
            plt.close()
        else:
            plt.show()
                
    reduced_Chisq =  imageLinearFit.reduced_chi2(image_reconstructed, error_map)
    if image_plot:
        f, axes = plt.subplots(1, 3, figsize=(16, 16), sharex=False, sharey=False)
        modelPlot.data_plot(ax=axes[0])
        modelPlot.model_plot(ax=axes[1])
        modelPlot.normalized_residual_plot(ax=axes[2], v_min=-6, v_max=6)
        f.tight_layout()
        #f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0., hspace=0.05)
        if tag is not None:
            f.savefig('{0}_fitted_image.pdf'.format(tag))
        if pltshow == 0:
            plt.close()
        else:
            plt.show()
    image_host = []    
    for i in range(len(source_result)):
        image_host_i = imageModel.source_surface_brightness(source_result,de_lensed=True,unconvolved=False, k=i)
#        print("image_host_i", source_result[i])
#        print("total flux", image_host_i.sum())
        image_host.append(image_host_i)  
        
    if corner_plot==True and no_MCMC==False:
        # here the (non-converged) MCMC chain of the non-linear parameters
        if not samples_mcmc == []:
           n, num_param = np.shape(samples_mcmc)
           plot = corner.corner(samples_mcmc, labels=param_mcmc, show_titles=True)
           if tag is not None:
               plot.savefig('{0}_para_corner.pdf'.format(tag))
           if pltshow == 0:
               plt.close()
           else:
               plt.show()
    if flux_corner_plot ==True and no_MCMC==False:
        param = Param(kwargs_model, kwargs_fixed_source=source_params[2], **kwargs_constraints)
        mcmc_new_list = []
        labels_new = ["host{0} flux".format(i) for i in range(len(source_params[0]))]
        for i in range(len(samples_mcmc)):
            kwargs_out = param.args2kwargs(samples_mcmc[i])
            kwargs_light_source_out = kwargs_out['kwargs_source']
            kwargs_ps_out =  kwargs_out['kwargs_ps']
            image_reconstructed, _, _, _ = imageLinearFit.image_linear_solve(kwargs_source=kwargs_light_source_out, kwargs_ps=kwargs_ps_out)
            fluxs = []
            for j in range(len(source_params[0])):
                image_j = imageModel.source_surface_brightness(kwargs_light_source_out,unconvolved= False, k=j)
                fluxs.append(np.sum(image_j))
            mcmc_new_list.append( fluxs )
            if int(i/1000) > int((i-1)/1000) :
                print(len(samples_mcmc), "MCMC samplers in total, finished translate:", i    )
        plot = corner.corner(mcmc_new_list, labels=labels_new, show_titles=True)
        if tag is not None:
            plot.savefig('{0}_HOSTvsQSO_corner.pdf'.format(tag))
        if pltshow == 0:
            plt.close()
        else:
            plt.show() 

    if galaxy_std is None:
        noise_map = np.sqrt(data_class.C_D+np.abs(error_map))
    else:
        noise_map = np.sqrt(galaxy_std**2+np.abs(error_map))   
        
    if dump_result == True:
        if flux_corner_plot==True and no_MCMC==False:
            trans_paras = [source_params[2], mcmc_new_list, labels_new, 'source_params[2], mcmc_new_list, labels_new']
        else:
            trans_paras = []
        picklename= tag + '.pkl'
        best_fit = [source_result, image_host, 'source_result, image_host']
#        pso_fit = [chain_list, param_list, 'chain_list, param_list']
#        mcmc_fit = [samples_mcmc, param_mcmc, dist_mcmc, 'samples_mcmc, param_mcmc, dist_mcmc']
        chain_list_result = [chain_list, 'chain_list']
        pickle.dump([best_fit, chain_list_result, trans_paras], open(picklename, 'wb'))
        
    if return_Chisq == False:
        return source_result, image_host, noise_map
    elif return_Chisq == True:
        return source_result, image_host, noise_map, reduced_Chisq