def test_advect_periodic(advection_scheme):
    xmin, ymin, zmin = 0., 0., 0.
    xmax, ymax, zmax = 1., 1., 1.
    pres = 10

    mesh = UnitCubeMesh(10, 10, 10)

    lims = np.array([[xmin, xmin, ymin, ymax, zmin, zmax],
                     [xmax, xmax, ymin, ymax, zmin, zmax],
                     [xmin, xmax, ymin, ymin, zmin, zmax],
                     [xmin, xmax, ymax, ymax, zmin, zmax],
                     [xmin, xmax, ymin, ymax, zmin, zmin],
                     [xmin, xmax, ymin, ymax, zmax, zmax]])

    vexpr = Constant((1., 1., 1.))
    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    x = RandomBox(Point(0., 0., 0.), Point(1., 1.,
                                           1.)).generate([pres, pres, pres])
    x = comm.bcast(x, root=0)
    dt = 0.05

    p = particles(x, [x * 0, x**2], mesh)

    if advection_scheme == 'euler':
        ap = advect_particles(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk2':
        ap = advect_rk2(p, V, v, 'periodic', lims.flatten())
    elif advection_scheme == 'rk3':
        ap = advect_rk3(p, V, v, 'periodic', lims.flatten())
    else:
        assert False

    xp0 = p.positions()
    t = 0.
    while t < 1. - 1e-12:
        ap.do_step(dt)
        t += dt
    xpE = p.positions()

    xp0_root = comm.gather(xp0, root=0)
    xpE_root = comm.gather(xpE, root=0)

    assert len(xp0) == len(xpE)
    num_particles = p.number_of_particles()

    if comm.Get_rank() == 0:
        xp0_root = np.float32(np.vstack(xp0_root))
        xpE_root = np.float32(np.vstack(xpE_root))

        # Sort on x positions
        xp0_root = xp0_root[xp0_root[:, 0].argsort(), :]
        xpE_root = xpE_root[xpE_root[:, 0].argsort(), :]

        error = np.linalg.norm(xp0_root - xpE_root)
        assert error < 1e-10
        assert num_particles - pres**3 == 0
def test_advect_open(advection_scheme):
    pres = 3

    mesh = UnitCubeMesh(10, 10, 10)

    # Particle
    x = RandomBox(Point(0.955, 0.45, 0.5),
                  Point(0.99, 0.55, 0.6)).generate([pres, pres, pres])
    x = comm.bcast(x, root=0)

    # Given velocity field:
    vexpr = Constant((1.0, 1.0, 1.0))
    # Given time do_step:
    dt = 0.05

    p = particles(x, [x, x], mesh)

    V = VectorFunctionSpace(mesh, "CG", 1)
    v = Function(V)
    v.assign(vexpr)

    # Different boundary parts
    bounds = Boundaries()
    bound_right = UnitCubeRight()

    # Mark all facets
    facet_marker = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    facet_marker.set_all(0)
    bounds.mark(facet_marker, 1)
    bound_right.mark(facet_marker, 2)

    # Mark as open
    bound_right.mark(facet_marker, 2)

    if advection_scheme == "euler":
        ap = advect_particles(p, V, v, facet_marker)
    elif advection_scheme == "rk2":
        ap = advect_rk2(p, V, v, facet_marker)
    elif advection_scheme == "rk3":
        ap = advect_rk3(p, V, v, facet_marker)
    else:
        assert False

    # Do one timestep, particle must bounce from wall of
    ap.do_step(dt)
    num_particles = p.number_of_particles()

    # Check if all particles left domain
    if comm.rank == 0:
        assert num_particles == 0
Exemplo n.º 3
0
def test_l2_projection_3D(polynomial_order, in_expression):
    xmin, ymin, zmin = 0.0, 0.0, 0.0
    xmax, ymax, zmax = 1.0, 1.0, 1.0
    nx = 25

    property_idx = 1
    mesh = BoxMesh(Point(xmin, ymin, zmin), Point(xmax, ymax, zmax), nx, nx,
                   nx)

    interpolate_expression = Expression(in_expression, degree=3)

    if len(interpolate_expression.ufl_shape) == 0:
        V = FunctionSpace(mesh, "DG", polynomial_order)
    elif len(interpolate_expression.ufl_shape) == 1:
        V = VectorFunctionSpace(mesh, "DG", polynomial_order)

    v_exact = Function(V)
    v_exact.assign(interpolate_expression)

    x = RandomBox(Point(0.0, 0.0, 0.0), Point(1.0, 1.0,
                                              1.0)).generate([4, 4, 4])
    s = assign_particle_values(x, interpolate_expression)

    # Just make a complicated particle, possibly with scalars and vectors mixed
    p = particles(x, [s], mesh)

    # Do AddDelete sweep
    AD = AddDelete(p, 13, 15, [v_exact])
    AD.do_sweep()

    vh = Function(V)
    lstsq_vh = l2projection(p, V, property_idx)
    lstsq_vh.project(vh.cpp_object())

    error_sq = abs(assemble(dot(v_exact - vh, v_exact - vh) * dx))
    if comm.Get_rank() == 0:
        assert error_sq < 1e-13
Exemplo n.º 4
0
shift = Expression(("0.0", "x[1]*(H - x[1])/S*A*cos(pi/Lx*x[0])*cos(pi/Lz*x[2])", "0.0"),
                   A=0.02, Lx=lmbdax, Lz=lmbdaz, H=1.0, S=scale, degree=4)

V = VectorFunctionSpace(mesh, "CG", 1)
displacement = interpolate(shift, V)
ALE.move(mesh, displacement)

# Entrainment functional measures
de = 1
cf = MeshFunction("size_t", mesh, mesh.topology().dim(), 0)
CompiledSubDomain("x[1] > db - DOLFIN_EPS", db=db).mark(cf, de)
dx = Measure("dx", subdomain_data=cf)

# Setup particles
pres = 25
x = RandomBox(Point(xmin, ymin, zmin), Point(xmax, ymax, zmax)).generate([pres, pres, pres])
s = np.zeros((len(x), 1), dtype=np.float_)

# Interpolate initial function onto particles, index slot 1
property_idx = 1
ptcls = particles(x, [s], mesh)

# Define the variational (projection problem)
k = 1
W_e = FiniteElement("DG", mesh.ufl_cell(), k)
T_e = FiniteElement("DG", mesh.ufl_cell(), 0)
Wbar_e = FiniteElement("DGT", mesh.ufl_cell(), k)

# Composition field space
Wh = FunctionSpace(mesh, W_e)
Th = FunctionSpace(mesh, T_e)