Exemplo n.º 1
0
def fit_ThinPlateSpline_corr(x_nd, y_md, corr_nm, l, rot_reg, x_weights = None):
    wt_n = corr_nm.sum(axis=1)

    if np.any(wt_n == 0):
        inlier = wt_n != 0
        x_nd = x_nd[inlier,:]
        wt_n = wt_n[inlier,:]
        x_weights = x_weights[inlier]
        xtarg_nd = (corr_nm[inlier,:]/wt_n[:,None]).dot(y_md)
    else:
        xtarg_nd = (corr_nm/wt_n[:,None]).dot(y_md)

    if x_weights is not None:
        if x_weights.ndim > 1:
            wt_n=wt_n[:,None]*x_weights
        else:
            wt_n=wt_n*x_weights
    
    f = fit_ThinPlateSpline(x_nd, xtarg_nd, bend_coef = l, wt_n = wt_n, rot_coef = rot_reg)
    f._bend_coef = l
    f._wt_n = wt_n
    f._rot_coef = rot_reg
    f._cost = tps.tps_cost(f.lin_ag, f.trans_g, f.w_ng, f.x_na, xtarg_nd, l, wt_n=wt_n)/wt_n.mean()
    
    return f
Exemplo n.º 2
0
def rpm_em_step_stat(x_nd, y_md, l, T, rot_reg, prev_f, vis_cost_xy = None, outlierprior = 1e-2, normalize_iter = 20, T0 = .04, user_data=None):
    """
    Statiscal interpretation of the RPM EM step
    """
    n,d = x_nd.shape
    m,_ = y_md.shape
    xwarped_nd = prev_f.transform_points(x_nd)
    
    dist_nm = ssd.cdist(xwarped_nd, y_md, 'sqeuclidean')
    outlier_dist_1m = ssd.cdist(xwarped_nd.mean(axis=0)[None,:], y_md, 'sqeuclidean')
    outlier_dist_n1 = ssd.cdist(xwarped_nd, y_md.mean(axis=0)[None,:], 'sqeuclidean')

    # Note: proportionality constants within a column can be ignored since Sinkorn balancing normalizes the columns first
    prob_nm = np.exp( -(dist_nm / (2*T)) + (outlier_dist_1m / (2*T0)) ) / np.sqrt(T) # divide by np.exp( outlier_dist_1m / (2*T0) ) to prevent prob collapsing to zero
    if vis_cost_xy != None:
        pi = np.exp( -vis_cost_xy )
        pi /= pi.sum(axis=0)[None,:] # normalize along columns; these are proper probabilities over j = 1,...,N
        prob_nm *= (1. - outlierprior) * pi
    else:
        prob_nm *= (1. - outlierprior) / float(n)
    outlier_prob_1m = outlierprior * np.ones((1,m)) / np.sqrt(T0) # divide by np.exp( outlier_dist_1m / (2*T0) )
    outlier_prob_n1 = np.exp( -outlier_dist_n1 / (2*T0) ) / np.sqrt(T0)
    prob_NM = np.empty((n+1, m+1), 'f4')
    prob_NM[:n, :m] = prob_nm
    prob_NM[:n, m][:,None] = outlier_prob_n1
    prob_NM[n, :m][None,:] = outlier_prob_1m
    prob_NM[n, m] = 0
    
    r_N, c_M = sinkhorn_balance_coeffs(prob_NM, normalize_iter)
    prob_NM *= r_N[:,None]
    prob_NM *= c_M[None,:]
    # prob_NM needs to be row-normalized at this point
    corr_nm = prob_NM[:n, :m]
    
    wt_n = corr_nm.sum(axis=1)

    # discard points that are outliers (i.e. their total correspondence is smaller than 1e-2)    
    inlier = wt_n > 1e-2
    if np.any(~inlier):
        x_nd = x_nd[inlier,:]
        wt_n = wt_n[inlier,:]
        xtarg_nd = (corr_nm[inlier,:]/wt_n[:,None]).dot(y_md)
    else:
        xtarg_nd = (corr_nm/wt_n[:,None]).dot(y_md)

    f = fit_ThinPlateSpline(x_nd, xtarg_nd, bend_coef = l, wt_n = wt_n, rot_coef = rot_reg)
    f._bend_coef = l
    f._rot_coef = rot_reg
    f._cost = tps.tps_cost(f.lin_ag, f.trans_g, f.w_ng, f.x_na, xtarg_nd, l, wt_n=wt_n)/wt_n.mean()

    return f, corr_nm