Exemplo n.º 1
0
    def test_convolution_layer(self):
        """Test a model with a single CNTK Convolution layer against the
        equivalent ELL predictor. This verifies that the import functions
        reshape and reorder values appropriately and that the equivalent ELL
        layer produces comparable output
        """

        # Create a Convolution CNTK layer with no bias or activation,
        # auto-padding, stride of 1
        convolutionLayer = Convolution((3, 3), 5, pad=(
            True, True), strides=1, bias=False, init=0)
        x = input((2, 3, 4))  # Input order for CNTK is channels, rows, columns
        cntkModel = convolutionLayer(x)

        # Create a test set of weights to use for both CNTK and ELL layers
        # CNTK has these in filters, channels, rows, columns order
        weightValues = np.arange(90, dtype=np.float_).reshape(5, 2, 3, 3)

        # Set the weights
        convolutionLayer.parameters[0].value = weightValues

        # create an ELL Tensor from the cntk weights, which re-orders the
        # weights and produces an appropriately dimensioned tensor
        weightTensor = cntk_converters.\
            get_float_tensor_from_cntk_convolutional_weight_parameter(
                convolutionLayer.parameters[0])

        # Create the equivalent ELL predictor
        layerParameters = ell.LayerParameters(
            # Input order for ELL is rows, columns, channels. Account for
            # padding.
            ell.TensorShape(3 + 2, 4 + 2, 2),
            ell.ZeroPadding(1),
            ell.TensorShape(3, 4, 5),
            ell.NoPadding())

        convolutionalParameters = ell.ConvolutionalParameters(3, 1, 0, 5)

        layer = ell.FloatConvolutionalLayer(
            layerParameters, convolutionalParameters, weightTensor)
        predictor = ell.FloatNeuralNetworkPredictor([layer])

        # Get the results for both
        inputValues = np.arange(24, dtype=np.float32).reshape(2, 3, 4)
        cntkResults = cntkModel(inputValues)
        orderedCntkResults = cntk_converters.get_float_vector_from_cntk_array(
            cntkResults)
        orderedInputValues = cntk_converters.get_float_vector_from_cntk_array(
            inputValues)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare the results
        np.testing.assert_array_equal(
            orderedCntkResults, ellResults,
            'results for Convolution layer do not match!')

        # now run same over ELL compiled model
        self.verify_compiled(
            predictor, orderedInputValues, orderedCntkResults, "convolution",
            "test")
Exemplo n.º 2
0
    def test_prelu_activation_layer(self):
        """Test a model with a single CNTK PReLU activation layer against the
        equivalent ELL predictor. This verifies that the import functions
        reshape and reorder values appropriately and that the equivalent ELL
        layer produces comparable output
        """

        # Create a test set of alpha parameters to use for both CNTK and ELL
        # layers
        # Input order for CNTK is channels, rows, columns
        alphaValues = np.linspace(1, 2, num=16 * 10 * 10,
                                  dtype=np.float32).reshape(16, 10, 10)

        # create an ELL Tensor from the alpha parameters, which re-orders and
        # produces an appropriately dimensioned tensor
        alphaTensor = cntk_converters.\
            get_float_tensor_from_cntk_convolutional_weight_value_shape(
                alphaValues, alphaValues.shape)

        inputValues = np.linspace(-5, 5, num=16 * 10 * 10,
                                  dtype=np.float32).reshape(16, 10, 10)

        # Evaluate a PReLU CNTK layer
        x = input((16, 10, 10))
        p = parameter(shape=x.shape, init=alphaValues, name="prelu")
        cntkModel = param_relu(p, x)

        # Create the equivalent ELL predictor
        layerParameters = ell.neural.LayerParameters(
            # Input order for ELL is rows, columns, channels
            ell.math.TensorShape(10, 10, 16),
            ell.neural.NoPadding(),
            ell.math.TensorShape(10, 10, 16),
            ell.neural.NoPadding())
        layer = ell.neural.FloatPReLUActivationLayer(layerParameters,
                                                     alphaTensor)
        predictor = ell.neural.FloatNeuralNetworkPredictor([layer])

        cntkResults = cntkModel(inputValues)
        orderedCntkResults = cntk_converters.get_float_vector_from_cntk_array(
            cntkResults)
        orderedInputValues = cntk_converters.get_float_vector_from_cntk_array(
            inputValues)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare the results
        np.testing.assert_array_equal(
            orderedCntkResults, ellResults,
            'results for PReLU Activation layer do not match!')

        # now run same over ELL compiled model
        self.verify_compiled(predictor, orderedInputValues, orderedCntkResults,
                             "prelu_activation", "test")
Exemplo n.º 3
0
    def test_dense_layer(self):
        """Test a model with a single CNTK Dense layer against the equivalent
        ELL predictor. This verifies that the import functions reshape and
        reorder values appropriately and that the equivalent ELL layer
        produces comparable output
        """

        # Create a Dense CNTK layer with no bias or activation
        denseLayer = Dense(5, bias=False)
        x = input((2, 3, 4))  # Input order for CNTK is channels, rows, columns
        cntkModel = denseLayer(x)

        # Create a test set of weights to use for both CNTK and ELL layers
        # CNTK has these in channels, rows, columns, [output shape] order
        weightValues = np.arange(120, dtype=np.float_).reshape(2, 3, 4, 5)

        # Set the weights
        denseLayer.parameters[0].value = weightValues

        # create an ELL Tensor from the cntk weights, which re-orders the
        # weights and produces an appropriately dimensioned tensor
        weightTensor = cntk_converters.\
            get_float_tensor_from_cntk_dense_weight_parameter(
                denseLayer.parameters[0])

        # Create the equivalent ELL predictor
        layerParameters = ell.neural.LayerParameters(
            # Input order for ELL is rows, columns, channels
            ell.math.TensorShape(3, 4, 2),
            ell.neural.NoPadding(),
            ell.math.TensorShape(1, 1, 5),
            ell.neural.NoPadding())

        layer = ell.neural.FloatFullyConnectedLayer(layerParameters,
                                                    weightTensor)
        predictor = ell.neural.FloatNeuralNetworkPredictor([layer])

        # Get the results for both
        inputValues = np.arange(24, dtype=np.float32).reshape(2, 3, 4)
        orderedInputValues = cntk_converters.get_float_vector_from_cntk_array(
            inputValues)
        cntkResults = cntkModel(inputValues)
        orderedCntkResults = cntk_converters.get_float_vector_from_cntk_array(
            cntkResults)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare the results
        np.testing.assert_array_equal(orderedCntkResults, ellResults,
                                      'results for Dense layer do not match!')

        # now run same over ELL compiled model
        self.verify_compiled(predictor, orderedInputValues, orderedCntkResults,
                             "dense", "test")
Exemplo n.º 4
0
    def verify_ell(self, op_name, predictor, input_data, cntk_output):
        """Compare this with the equivalent ELL layer, both reference and
        compiled.

        `op_name` is a human-readable name describing the layer being verified.
        """

        ellTestInput = cntk_converters.get_float_vector_from_cntk_array(
            input_data)
        ellResults = np.array(predictor.Predict(ellTestInput)).ravel()

        ellResultsOutputShape = predictor.GetOutputShape()
        reshapedEllOutput = np.reshape(
            ellResults,
            (ellResultsOutputShape.rows, ellResultsOutputShape.columns,
             ellResultsOutputShape.channels))
        if len(input_data.shape) == 3:
            reshapedEllOutput = np.transpose(reshapedEllOutput,
                                             (2, 0, 1))  # to match CNTK output

        # now compare these results.
        np.testing.assert_array_almost_equal(
            cntk_output,
            reshapedEllOutput.ravel(),
            decimal=4,
            err_msg=('Results for {} layer do not match!'.format(op_name)))

        # and verify compiled is also the same
        self.verify_compiled(predictor, ellTestInput, cntk_output, op_name)
Exemplo n.º 5
0
    def process(self, ellLayers):
        """Appends the ELL representation of the current layer to ellLayers."""

        # Create the ell.LayerParameters for the ELL layer
        layerParameters = ell.LayerParameters(
            self.layer.ell_inputShape, self.layer.ell_inputPaddingParameters, self.layer.ell_outputShape, self.layer.ell_outputPaddingParameters)

        bias = -1.0 * self.layer.constants[0].value
        if len(bias.shape) == 0:
            biasVector = converters.get_float_vector_from_constant(bias, layerParameters.outputShape.channels)
        else:
            biasVector = converters.get_float_vector_from_cntk_array(bias)

        # Create the ELL bias layer
        ellLayers.append(ell.FloatBiasLayer(layerParameters, biasVector))
Exemplo n.º 6
0
    def process(self, ellLayers):
        """Appends the ELL representation of the current layer to ellLayers."""

        # Create the ELL.LayerParameters for the ELL layer
        layerParameters = ELL.LayerParameters(
            self.layer.ell_inputShape, self.layer.ell_inputPaddingParameters,
            self.layer.ell_outputShape, self.layer.ell_outputPaddingParameters)

        # Create ELL scaling layer
        if (self.scale.value.size == 1):
            scalesVector = converters.get_float_vector_from_constant(
                self.scale.value, layerParameters.outputShape.channels)
        else:
            scalesVector = converters.get_float_vector_from_cntk_array(
                self.scale.value)

        ellLayers.append(ELL.FloatScalingLayer(layerParameters, scalesVector))
Exemplo n.º 7
0
    def save_layer_outputs(self, op_name):
        name = op_name + "(" + str(self.layer_index) + ")"
        self.layer_index += 1
        self.report.write("## %s\n" % (name))
        self.report.write("````\n")
        shape = self.data.shape
        self.report.write("Output size: " + str(shape))

        self.report.write("````\n")

        with open("Compare_" + name + ".csv", "w") as f:
            f.write("cntk,ell,compiled\n")

            a = cntk_converters.get_float_vector_from_cntk_array(self.data)
            b = self.ell_data.ravel()
            c = self.compiled_data.ravel()
            pos = 0
            while pos < len(a) and pos < len(b) and pos < len(c):
                f.write("%f,%f,%f\n" % (a[pos], b[pos], b[pos]))
                pos += 1
            f.close()
Exemplo n.º 8
0
    def test_batch_normalization_layer(self):
        """Test a model with a single CNTK BatchNormalization layer against the
        equivalent ELL predictor This verifies that the import functions
        reshape and reorder values appropriately and that the equivalent ELL
        layer produces comparable output
        """

        # Create a test set of scales and biases to use for both CNTK and ELL
        # layers
        scaleValues = np.linspace(0.1, 0.5, num=16, dtype=np.float32)
        scaleVector = cntk_converters.get_float_vector_from_cntk_array(
            scaleValues)

        biasValues = np.linspace(1, 2, num=16, dtype=np.float32)
        biasVector = cntk_converters.get_float_vector_from_cntk_array(
            biasValues)

        meanValues = np.linspace(-0.5, 0.5, num=16, dtype=np.float32)
        meanVector = cntk_converters.get_float_vector_from_cntk_array(
            meanValues)

        varianceValues = np.linspace(-1, 1, num=16, dtype=np.float32)
        varianceVector = cntk_converters.get_float_vector_from_cntk_array(
            varianceValues)

        # Create a BatchNormalization CNTK layer
        # CNTK's BatchNormalization layer does not support setting the running
        # mean and variance, so we use a wrapper function around the
        # batch_normalization op
        batchNorm = BatchNormalizationTester(init_scale=scaleValues,
                                             norm_shape=scaleValues.shape,
                                             init_bias=biasValues,
                                             init_mean=meanValues,
                                             init_variance=varianceValues)

        # Input order for CNTK is channels, rows, columns
        x = input((16, 10, 10))
        cntkModel = batchNorm(x)

        # Create the equivalent ELL predictor
        layers = []
        layerParameters = ell.neural.LayerParameters(
            # Input order for ELL is rows, columns, channels
            ell.math.TensorShape(10, 10, 16),
            ell.neural.NoPadding(),
            ell.math.TensorShape(10, 10, 16),
            ell.neural.NoPadding())

        # CNTK BatchNorm = ELL's BatchNorm + Scaling + Bias
        # 1e-5 is the default epsilon for CNTK's BatchNormalization Layer
        epsilon = 1e-5
        layers.append(
            ell.neural.FloatBatchNormalizationLayer(
                layerParameters, meanVector, varianceVector, epsilon,
                ell.neural.EpsilonSummand.variance))
        layers.append(
            ell.neural.FloatScalingLayer(layerParameters, scaleVector))
        layers.append(ell.neural.FloatBiasLayer(layerParameters, biasVector))

        predictor = ell.neural.FloatNeuralNetworkPredictor(layers)

        inputValues = np.linspace(-5, 5, num=16 * 10 * 10,
                                  dtype=np.float32).reshape(16, 10, 10)
        cntkResults = cntkModel(inputValues)

        orderedCntkResults = cntk_converters.get_float_vector_from_cntk_array(
            # Note that cntk inserts an extra dimension of 1 in the front
            cntkResults)
        orderedInputValues = cntk_converters.get_float_vector_from_cntk_array(
            inputValues)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare the results (precision is 1 less decimal place from epsilon)
        np.testing.assert_array_almost_equal(
            orderedCntkResults, ellResults, 6,
            'results for BatchNormalization layer do not match!')

        # now run same over ELL compiled model
        self.verify_compiled(predictor,
                             orderedInputValues,
                             orderedCntkResults,
                             "batch_norm",
                             "test",
                             precision=6)
Exemplo n.º 9
0
    def test_binary_convolution_layer(self):
        """Test a model with a single CNTK Binary Convolution layer against the
        equivalent ELL predictor. This verifies that the import functions
        reshape and reorder values appropriately and that the equivalent ELL
        layer produces comparable output
        """

        # Create a test set of weights to use for both CNTK and ELL layers
        # CNTK has these in filters, channels, rows, columns order
        weightValues = np.random.uniform(low=-5, high=5,
                                         size=(5, 2, 3, 3)).astype(np.float32)

        # create an ELL Tensor from the cntk weights, which re-orders the
        # weights and produces an appropriately dimensioned tensor
        weightTensor = cntk_converters.\
            get_float_tensor_from_cntk_convolutional_weight_value_shape(
                weightValues, weightValues.shape)

        # Create a Binary Convolution CNTK layer with no bias, no activation,
        # stride 1
        # Input order for CNTK is channels, rows, columns
        x = input((2, 10, 10))
        cntkModel = CustomSign(x)

        cntkModel = BinaryConvolution((10, 10),
                                      num_filters=5,
                                      channels=2,
                                      init=weightValues,
                                      pad=True,
                                      bias=False,
                                      init_bias=0,
                                      activation=False)(cntkModel)

        # Create the equivalent ELL predictor
        layerParameters = ell.neural.LayerParameters(
            # Input order for ELL is rows, columns, channels. Account for
            # padding.
            ell.math.TensorShape(10 + 2, 10 + 2, 2),
            ell.neural.ZeroPadding(1),
            ell.math.TensorShape(10, 10, 5),
            ell.neural.NoPadding())

        convolutionalParameters = ell.neural.BinaryConvolutionalParameters(
            3, 1, ell.neural.BinaryConvolutionMethod.bitwise,
            ell.neural.BinaryWeightsScale.none)

        layer = ell.neural.FloatBinaryConvolutionalLayer(
            layerParameters, convolutionalParameters, weightTensor)

        predictor = ell.neural.FloatNeuralNetworkPredictor([layer])

        # Get the results for both
        inputValues = np.random.uniform(low=-50, high=50,
                                        size=(2, 10, 10)).astype(np.float32)

        cntkResults = cntkModel(inputValues)
        orderedCntkResults = cntk_converters.get_float_vector_from_cntk_array(
            cntkResults)

        orderedInputValues = cntk_converters.get_float_vector_from_cntk_array(
            inputValues)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare the results
        np.testing.assert_array_equal(
            orderedCntkResults, ellResults,
            'results for Binary Convolution layer do not match!')

        # now run same over ELL compiled model
        self.verify_compiled(predictor, orderedInputValues, orderedCntkResults,
                             "binary_convolution", "test")