Exemplo n.º 1
0
        d['smart_tracing_policy_isolate'] = 'basic'
        d['smart_tracing_isolated_contacts'] = 100000

        # testing
        d['smart_tracing_policy_test'] = 'basic'
        d['smart_tracing_tested_contacts'] = 100000
        d['trigger_tracing_after_posi_trace_test'] = False
        return d

    sim_info = options_to_str(
        expected_daily_base_expo_per100k=expected_daily_base_expo_per100k)

    # baseline
    experiment.add(
        simulation_info=sim_info,
        country=country,
        area=area,
        measure_list=m,
        test_update=test_update,
        seed_summary_path=seed_summary_path,
        set_initial_seeds_to=set_initial_seeds_to,
        set_calibrated_params_to=calibrated_params,
        full_scale=full_scale,
        store_mob=store_mob,
        expected_daily_base_expo_per100k=expected_daily_base_expo_per100k)

    print(f'{experiment_info} configuration done.')

    # execute all simulations
    experiment.run_all()
Exemplo n.º 2
0
                    measure_window_in_hours['start'], 
                    measure_window_in_hours['end']),
                p_stay_home=p_stay_home),

            BetaMultiplierMeasureByType(
                t_window=Interval(
                    measure_window_in_hours['start'], 
                    measure_window_in_hours['end']),
                beta_multiplier=calibration_lockdown_beta_multipliers)
            ]

        simulation_info = options_to_str(iter=iteration)

        experiment.add(
            simulation_info=simulation_info,
            country=country,
            area=area,
            measure_list=m,
            lockdown_measures_active=False,
            test_update=None,
            seed_summary_path=seed_summary_path,
            set_calibrated_params_to=calibrated_params,
            set_initial_seeds_to=set_initial_seeds_to,
            full_scale=full_scale)

    print(f'{experiment_info} configuration done.')
    
    # execute all simulations
    experiment.run_all()

Exemplo n.º 3
0
            site_type: 1.0
            for site_type in calibration_lockdown_site_closures
        }
        p_stay_home_dict = {
            **p_stay_home_dict_closures,
            **p_stay_home_dict_mobility_reduced
        }

        m = [
            SocialDistancingBySiteTypeForAllMeasure(
                t_window=Interval(measure_window_in_hours['start'],
                                  measure_window_in_hours['end']),
                p_stay_home_dict=p_stay_home_dict),
        ]

        sim_info = options_to_str(validation_region=val_area)

        experiment.add(simulation_info=sim_info,
                       country=val_country,
                       area=val_area,
                       measure_list=m,
                       seed_summary_path=seed_summary_path,
                       set_calibrated_params_to=calibrated_params,
                       set_initial_seeds_to=set_initial_seeds_to,
                       full_scale=full_scale)

        print(f'{experiment_info} configuration done.')

        # execute all simulations
        experiment.run_all()
Exemplo n.º 4
0
    end_date = calibration_lockdown_dates[country]['end']

    # create experiment object
    experiment_info = f'{name}-{country}-{area}'
    experiment = Experiment(
        experiment_info=experiment_info,
        start_date=start_date,
        end_date=end_date,
        random_repeats=random_repeats,
        cpu_count=cpu_count,
        full_scale=full_scale,
        verbose=verbose,
    )

    # baseline
    experiment.add(simulation_info='baseline',
                   country=country,
                   area=area,
                   measure_list=[],
                   lockdown_measures_active=False,
                   seed_summary_path=seed_summary_path,
                   set_calibrated_params_to=calibrated_params,
                   set_initial_seeds_to=set_initial_seeds_to,
                   full_scale=full_scale,
                   store_mob=store_mob)

    print(f'{experiment_info} configuration done.')

    # execute all simulations
    experiment.run_all()
Exemplo n.º 5
0
                                                  maxiters=maxBOiters)
        calibrated_params['beta_site'] = expparams[
            'beta_scaling'] * calibrated_params['beta_site']

        simulation_info = options_to_str(
            exp=exp, beta_scaling=expparams['beta_scaling'])

        summary_path = experiment_info + '/' + experiment_info + '-' + simulation_info
        summary_paths.append(summary_path)

        if not os.path.exists('summaries/' + summary_path + '.pk'):
            experiment.add(
                simulation_info=simulation_info,
                country=country,
                area=area,
                test_update=None,
                measure_list=[],  # set automatically during lockdown
                seed_summary_path=seed_summary_path,
                set_initial_seeds_to=set_initial_seeds_to,
                set_calibrated_params_to=calibrated_params,
                full_scale=expparams['full_scale'])
            print(f'{experiment_info} configuration done.')
        else:
            print(
                f'Summary file exists already, skipping experiment {experiment_info}-{simulation_info}'
            )

    if not plot_only:
        experiment.run_all()
    else:
        print(
            'Simulations were not run. Trying to produce plots from existing summaries.'