Exemplo n.º 1
0
def time_end(info_dict: InfoDict, time_name):
    info_dict.time_dict[time_name + '_end'] = time.time()
    if (time_name + '_diff' not in info_dict.time_dict.keys()) or (
            info_dict.time_dict[time_name + '_diff'] == -1.):
        info_dict.time_dict[time_name + '_diff'] = info_dict.time_dict[
            time_name + '_end'] - info_dict.time_dict[time_name + '_begin']
    else:
        info_dict.time_dict[time_name + '_diff'] += info_dict.time_dict[
            time_name + '_end'] - info_dict.time_dict[time_name + '_begin']
Exemplo n.º 2
0
def load_input_data(input_dir_path):
    """
    读取dcm数据
    """
    info_dict = InfoDict()
    info_dict.data_path = input_dir_path

    image_raw, info_dict = load_data(info_dict)

    # 保证图像为512x512大小
    image_raw = judge_resize_512(image_raw, 'linear')
    info_dict.image_shape_raw = image_raw.shape

    classes_value = [7] * len(image_raw)
    info_dict.classes_value = classes_value

    return image_raw, info_dict
Exemplo n.º 3
0
def store_info_dict(info_dict=InfoDict(), input_dict={}, **kwargs):
    assertor.type_assert(input_dict, dict)
    assertor.type_assert(kwargs, dict)

    for temp_dict_key, temp_dict_value in input_dict.items():
        info_dict[temp_dict_key] = temp_dict_value

    for temp_dict_key, temp_dict_value in kwargs.items():
        info_dict[temp_dict_key] = temp_dict_value

    return info_dict
Exemplo n.º 4
0
def parser_argv_to_info_dict(info_dict: InfoDict, file_pos: str,
                             is_classify: bool):
    """
    解析输入参数存到info_dict中
    整体流程:
    1.判别输入是否一致(都为key value pair或者顺序调用)
    2.判别是key value pair还是顺序调用
    3.调用相应的解析
    :param info_dict:
    :param is_classify:
    :return:
    """
    argv_list = sys.argv[1:]
    assertor.greater_or_equal_assert(len(argv_list), 1)

    # 1.判别输入是否一致(都为key value pair或者顺序调用)
    if not _is_input_consistant(argv_list):
        raise ValueError(
            'The input mix with keyvalue pair and none keyvalue pair parameter'
        )
    # 2.判别是key value pair还是顺序调用
    if _is_keyvalue_pair(argv_list):
        # 3.调用相应的解析
        input_dict = parser_keyvalue_argv_as_dict(argv_list, file_pos)
    else:
        # 3.调用相应的解析
        input_dict = parser_argv_as_dict(argv_list, file_pos, is_classify)

    info_dict = store_info_dict(info_dict, input_dict)

    if 'full_body_classify' in file_pos:
        info_dict.alg_name = 'full_body_classify'
    else:
        info_dict.alg_name = file_pos.split('get_')[-1].replace(
            '_contours.py', '')

    return info_dict
Exemplo n.º 5
0
def interp_2d_pack(image_block, info_dict: InfoDict, kernal_size=0):
    '''2d image interpolation package
    :param image_block: 3d volume, format: zyx
    :param info_dict:  should have info_dict.spacing_list, info_dict.target_spacing
    :param kind: interpolation methods, cv2.INTER_LINEAR cv2.INTER_NEAREST cv2.INTER_CUBIC(slow)
    :param kernel_size: used in median blurring for interpolation results. if 0, then no blurring operation
    :return image_interp: resized image volume ,its dtype is same with image_block
    :return info_dict: info_dict
    '''

    if len(image_block.shape) != 3:
        # 输入图像的shape错误, 返回错误码
        Error.exit(ErrorCode.process_input_shape_error)

    if not "target_spacing" in info_dict:
        Error.exit(ErrorCode.process_module_error)

    raw_dtype = image_block.dtype
    image_block = check_for_cv2_dtype(image_block, raw_dtype)

    spacing = [info_dict.spacing_list[1], info_dict.spacing_list[2]]
    pixel = np.array(spacing, dtype=np.float32) / np.array(
        info_dict.target_spacing, dtype=np.float32)
    new_x = int(image_block.shape[2] * pixel[0])
    new_y = int(image_block.shape[1] * pixel[1])

    info_dict.image_shape_before_interp = image_block.shape

    image_interp = np.zeros((image_block.shape[0], new_x, new_y), np.float32)

    for i in range(image_block.shape[0]):
        image_one = interp_2d_yx(image_block[i, :, :], new_x, new_y,
                                 info_dict.interp_kind, kernal_size)
        image_interp[i, :, :] = image_one

    return image_interp, info_dict
Exemplo n.º 6
0
def time_begin(info_dict: InfoDict, time_name):
    info_dict.time_dict[time_name + '_begin'] = time.time()
def check_large_image_zyx(input_array: np.ndarray,
                          info_dict: InfoDict,
                          old_spacing=None,
                          threshold_shape=(512, 512)):
    """
    功能:解决超过512, 512图像问题进行插值
    整体流程:
    1. 得到原始图像大小并进行判断
    2. 如果小于512, 直接返回
    3. 如果大于512, 计算两个维度的比值,选取大的比值计算出新的图像大小
    4. 计算出新的spacing, 存回info_dict
    5. 对原图像进行插值得到返回图像
    """
    if old_spacing is None:
        old_spacing = info_dict.spacing_list.copy()
    # 断言保证
    assertor.array_x_dims_assert(
        input_array,
        3,
        error_code=ErrorCode.process_input_shape_error,
        msg='Assert pos: interp_large_image_zyx')
    assertor.equal_assert(len(old_spacing),
                          3,
                          error_code=ErrorCode.process_input_shape_error,
                          msg='Assert pos: interp_large_image_zyx')
    assertor.equal_assert(len(threshold_shape),
                          2,
                          error_code=ErrorCode.process_input_shape_error,
                          msg='Assert pos: interp_large_image_zyx')
    # 开关保护
    if not info_dict.use_large_image_check:
        return input_array, info_dict

    # 1. 得到原始图像大小并进行判断
    input_z, input_y, input_x = input_array.shape

    thre_y, thre_x = threshold_shape
    # 2. 如果小于512, 直接返回
    if (input_x <= thre_x) and (input_y <= thre_y):
        return input_array, info_dict
    # 3. 如果大于512, 计算两个维度的比值,选取大的比值计算出新的图像大小
    ratio_x = input_x / thre_x
    ratio_y = input_y / thre_y
    ratio = max(ratio_x, ratio_y)
    new_x = int(input_x / ratio)
    new_y = int(input_y / ratio)

    # 4. 计算出新的spacing, 存回info_dict
    new_spacing = trans_spacing_by_shape(old_spacing[1:], [input_y, input_x],
                                         [new_y, new_x])
    info_dict.spacing_list[1:] = new_spacing
    info_dict.large_raw_spacing = old_spacing

    # 5. 对原图像进行插值得到返回图像
    rst_array = np.zeros((input_z, new_y, new_x), dtype=input_array.dtype)
    for i in range(input_z):
        # 注意,这里需要反着调用
        rst_array[i, :, :] = interp_2d_yx(input_array[i, :, :], new_x, new_y)
    info_dict.large_image_shape = (input_z, input_y, input_x)
    info_dict.image_shape_raw = rst_array.shape

    return rst_array, info_dict
def anti_check_large_image_zyx(input_array: np.ndarray, info_dict: InfoDict):
    """
    功能: 反处理图像大于512,512的情况
    整体流程:
    1. 得到返回图像大小和原始图像大小并进行判断
    2. 如果为None, 直接返回
    3. 计算出新的spacing, 存回info_dict
    4. 对原图像进行插值得到返回图像
    """
    # 断言保证
    assertor.array_x_dims_assert(
        input_array,
        3,
        error_code=ErrorCode.process_input_shape_error,
        msg='Assert pos: interp_large_image_zyx')

    # 开关保护
    if not info_dict.use_large_image_check:
        return input_array, info_dict

    # 1. 得到返回图像大小和原始图像大小并进行判断
    large_image_shape = info_dict.large_image_shape
    # 2. 如果为None, 直接返回
    if large_image_shape is None:
        return input_array, info_dict

    # 3. 计算出新的spacing, 存回info_dict
    large_raw_spacing = info_dict.large_raw_spacing
    if large_raw_spacing is None:
        print('large_image_shape exist, but large_raw_spacing is None')
        Error.exit(ErrorCode.process_data_type_error)
    info_dict.spacing_list = large_raw_spacing

    # 4. 对原图像进行插值得到返回图像
    rst_array = np.zeros(large_image_shape, dtype=input_array.dtype)
    input_z, input_y, input_x = large_image_shape
    for i in range(input_z):
        # 注意,这里需要反着调用
        rst_array[i, :, :] = interp_2d_yx(input_array[i, :, :],
                                          input_x,
                                          input_y,
                                          kind=CV2_interp_type.nearest)
    info_dict.image_shape_raw = large_image_shape

    return rst_array, info_dict


# if __name__ == '__main__':
#     info_dict = InfoDict()
#     info_dict.spacing_list = [1,1,1]
#     input_array = np.zeros((15,1024,512), dtype=np.int16)
#     out_array, info_dict = check_large_image_zyx(input_array, info_dict)
#     print(input_array.shape)
#     print(out_array.shape)
#     print(info_dict.spacing_list)
#     print(info_dict.large_image_shape)
#     print(info_dict.large_raw_spacing)
#     print()
#     new_array, info_dict = anti_check_large_image_zyx(out_array, info_dict)
#     print(input_array.shape)
#     print(out_array.shape)
#     print(new_array.shape)
#     print(info_dict.spacing_list)
#     print(info_dict.large_image_shape)
#     print(info_dict.large_raw_spacing)