Exemplo n.º 1
0
    def __init__(self,
                 types_list=None,
                 learn_std=False,
                 activation_layer='ReLU',
                 K=1,
                 M=1):
        """
        Initialize BaseMissVAE.
        Args:
            types_list (list of dictionaries): Each dictionary contains: name, type, dim, nclass, index; for every
            attribute.
            learn_std (boolean): Learn the :math:`\sigma` for the real and positive distributions.
            activation_layer (string): Choose "relu", "tanh" or "sigmoid".
            K: number of importance weights for IWAE model (see: https://arxiv.org/abs/1509.00519)
            M: number of Monte Carlo samples for ELBO estimation
        """
        super(BaseMissVAE, self).__init__()

        # Heterogeneous vars
        assert types_list is not None
        self.types_list = utils.reindex_types_list(types_list)
        self.transform_idx = utils.get_idx_transform(self.types_list)

        self.device = set_device()
        self.learn_std = learn_std
        self.activation = utils.set_activation_layer(activation_layer)

        # Sampler
        self.sampler = samplers.Sampler()

        # Loss
        self.loss = Loss()
        self.K = K
        self.M = M
Exemplo n.º 2
0
    def __init__(self, cfg):
        """
        Implementation of the CoMVC model.

        :param cfg: Model config. See `config.defaults.CoMVC` for documentation on the config object.
        """
        super().__init__()

        self.cfg = cfg
        self.output = self.hidden = self.fused = self.backbone_outputs = self.projections = None

        # Define Backbones and Fusion modules
        self.backbones = Backbones(cfg.backbone_configs)
        self.fusion = get_fusion_module(cfg.fusion_config, self.backbones.output_sizes)

        bb_sizes = self.backbones.output_sizes
        assert all([bb_sizes[0] == s for s in bb_sizes]), f"CoMVC requires all backbones to have the same " \
                                                          f"output size. Got: {bb_sizes}"

        if cfg.projector_config is None:
            self.projector = nn.Identity()
        else:
            self.projector = MLP(cfg.projector_config, input_size=bb_sizes[0])

        # Define clustering module
        self.ddc = DDC(input_dim=self.fusion.output_size, cfg=cfg.cm_config)
        # Define loss-module
        self.loss = Loss(cfg=cfg.loss_config)
        # Initialize weights.
        self.apply(helpers.he_init_weights)
        # Instantiate optimizer
        self.optimizer = Optimizer(cfg.optimizer_config, self.parameters())
Exemplo n.º 3
0
    def __init__(self, cfg):
        """
        Full DDC model

        :param cfg: DDC model config
        :type cfg: config.defaults.DDCModel
        """
        super().__init__()

        self.cfg = cfg
        self.backbone_output = self.output = self.hidden = None
        self.backbone = Backbones.create_backbone(cfg.backbone_config)
        self.ddc_input_size = np.prod(self.backbone.output_size)
        self.ddc = DDC([self.ddc_input_size], cfg.cm_config)
        self.loss = Loss(cfg.loss_config)

        # Initialize weights.
        self.apply(helpers.he_init_weights)
        # Instantiate optimizer
        self.optimizer = Optimizer(cfg.optimizer_config, self.parameters())
Exemplo n.º 4
0
    def __init__(self, cfg):
        """
        Implementation of the SiMVC model.

        :param cfg: Model config. See `config.defaults.SiMVC` for documentation on the config object.
        """
        super().__init__()

        self.cfg = cfg
        self.output = self.hidden = self.fused = self.backbone_outputs = None

        # Define Backbones and Fusion modules
        self.backbones = Backbones(cfg.backbone_configs)
        self.fusion = get_fusion_module(cfg.fusion_config,
                                        self.backbones.output_sizes)
        # Define clustering module
        self.ddc = DDC(input_dim=self.fusion.output_size, cfg=cfg.cm_config)
        # Define loss-module
        self.loss = Loss(cfg=cfg.loss_config)
        # Initialize weights.
        self.apply(helpers.he_init_weights)

        # Instantiate optimizer
        self.optimizer = Optimizer(cfg.optimizer_config, self.parameters())
Exemplo n.º 5
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.outf = proj_dir+'trained_models/ycb'  # folder to save trained models
        opt.log_dir = proj_dir+'experiments/logs/ycb'  # folder to save logs
        opt.repeat_epoch = 1  # number of repeat times for one epoch training
    else:
        print('Unknown dataset')
        return

    estimator = SymNet(num_points = opt.num_points)
    estimator.cuda()

    if opt.resume_symnet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_symnet)))

    opt.refine_start = False
    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
    opt.w *= opt.w_rate

    if opt.dataset == 'ycb':
        dataset = SymDataset_ycb('train', opt.num_points, False, opt.dataset_root, proj_dir,opt.noise_trans, opt.refine_start)
        test_dataset = SymDataset_ycb('test', opt.num_points, False, opt.dataset_root, proj_dir,0.0, opt.refine_start)

    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh)

    best_test = 0

    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        train_err_cent = 0.0
        train_loss_ref = 0.0
        train_err_ref = 0.0
        train_err_num = 0.0
        train_err_mode = 0.0

        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img,  idx, target_s, target_num, target_mode, pt_num = data  # the original version
                if idx not in sym_list:
                    continue
                points, choose, img, idx, target_s, target_num, target_mode = Variable(points).cuda(), \
                                                                             Variable(choose).cuda(), \
                                                                             Variable(img).cuda(), \
                                                                             Variable(idx).cuda(),\
                                                                             Variable(target_s).cuda(), \
                                                                             Variable(target_num).cuda(),\
                                                                             Variable(target_mode).cuda()

                pred_cent, pred_ref,pred_foot_ref,pred_rot, pred_num, pred_mode, emb = estimator(img, points, choose)
                loss, dis, error_cent, loss_ref, error_ref, error_num, error_mode = criterion(
                                                             pred_cent, pred_ref,pred_foot_ref,pred_rot,
                                                            pred_num, pred_mode, target_s,
                                                            points, opt.w, target_mode)

                loss.backward()

                train_dis_avg += dis.item()
                train_err_cent += error_cent.item()
                train_loss_ref += loss_ref.item()
                train_err_ref += error_ref.item()
                train_err_num += error_num.item()
                train_err_mode += error_mode.item()

                train_count += 1

                if train_count % opt.batch_size == 0:

                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} error_ref: {8} loss_ref:{9} loss_cent: {7} loss_num: {5} loss_mode:{6} Avg_loss:{4} cls_id: {10}'.format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size,
                            train_err_num / opt.batch_size, train_err_mode / opt.batch_size,
                            train_err_cent / opt.batch_size, train_err_ref / opt.batch_size,
                            train_loss_ref / opt.batch_size, idx.data.cpu().numpy().reshape(-1)[0]))

                    optimizer.step()
                    optimizer.zero_grad()

                    train_dis_avg = 0
                    train_err_cent = 0
                    train_err_num = 0
                    train_err_mode = 0
                    train_err_ref = 0
                    train_loss_ref = 0

                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(), '{0}/sym_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))


        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))

        test_dis = 0.0  # add symmetry dis
        test_err_num = 0.0
        test_err_mode = 0.0
        test_err_ref = 0.0
        test_loss_ref = 0.0
        test_err_cent = 0.0
        test_count = 0
        ang_tps = 0
        estimator.eval()
        # refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, idx, target_s, target_num,target_mode,pt_num = data
            if idx not in sym_list:
                continue
            points, choose, img, idx, target_s, target_num, target_mode = \
                                                             Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(idx).cuda(), \
                                                             Variable(target_s).cuda(), \
                                                             Variable(target_num).cuda(),\
                                                             Variable(target_mode).cuda()

            pred_cent, pred_ref, pred_foot_ref, pred_rot, pred_num, pred_mode, emb = estimator(img, points, choose)
            _, dis, error_cent, loss_ref, error_ref, error_num, error_mode = criterion(
                pred_cent, pred_ref, pred_foot_ref, pred_rot,
                pred_num, pred_mode, target_s,
                points, opt.w, target_mode)

            test_dis += dis.item()
            test_err_cent += error_cent.item()
            test_err_num += error_num.item()
            test_err_mode += error_mode.item()
            test_loss_ref += loss_ref.item()
            test_err_ref += error_ref.item()

            logger.info(
                'Test time {0} Test Frame:{1} error_ref:{6} loss_ref:{7} loss_cent:{5} loss_num:{3} loss_mode:{4} total_loss:{2} cls_id{8}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), test_count, dis, error_num, error_mode,
                    error_cent, error_ref, loss_ref, idx.data.cpu().numpy().reshape(-1)[0]))

            test_count += 1

            if error_ref <= 20:
                ang_tps += 1

        test_dis = test_dis / test_count
        test_err_num = test_err_num / test_count
        test_err_mode = test_err_mode / test_count
        test_err_ref = test_err_ref / test_count
        test_loss_ref = test_loss_ref / test_count
        test_err_cent = test_err_cent / test_count

        pect_ang_tps = ang_tps / test_count
        # angle_loss = math.cos(test_err_ref)

        logger.info('Test time {0} Epoch {1} TEST FINISH loss_ref:{7} angle_tps{8} Avg dis:{2} error_num:{3} error_mode:{4} error_cent:{5} error_ref:{6} '.format(time.strftime("%Hh %Mm %Ss",
                    time.gmtime(time.time() - st_time)), epoch, test_dis, test_err_num, test_err_mode, test_err_cent,test_err_ref, test_loss_ref, pect_ang_tps))
        if pect_ang_tps >= best_test:
            best_test = pect_ang_tps
            torch.save(estimator.state_dict(), '{0}/sym_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))

            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if test_err_ref < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)
    # device_ids = [0,1]
    cudnn.benchmark = True
    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)

    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    # refiner.cuda()
    # estimator = nn.DataParallel(estimator, device_ids=device_ids)

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
        print('LOADED!!')

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        print('no refinement')
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        # optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, False,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
        # print(dataset.list)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    # print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    # criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf
    best_epoch = 0

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    count_gen = 0

    mode = 1

    if mode == 1:

        for epoch in range(opt.start_epoch, opt.nepoch):
            logger = setup_logger(
                'epoch%d' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
            logger.info('Train time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Training started'))
            train_count = 0
            train_dis_avg = 0.0
            if opt.refine_start:
                estimator.eval()
                refiner.train()
            else:
                estimator.train()
            optimizer.zero_grad()

            for rep in range(opt.repeat_epoch):
                for i, data in enumerate(dataloader, 0):
                    points, choose, img, target_sym, target_cen, idx, file_list_idx = data

                    if idx is 9 or idx is 16:
                        continue

                    points, choose, img, target_sym, target_cen, idx = Variable(points).cuda(), \
                                                                     Variable(choose).cuda(), \
                                                                     Variable(img).cuda(), \
                                                                     Variable(target_sym).cuda(), \
                                                                     Variable(target_cen).cuda(), \
                                                                     Variable(idx).cuda()

                    pred_norm, pred_on_plane, emb = estimator(
                        img, points, choose, idx)

                    loss = criterion(pred_norm, pred_on_plane, target_sym,
                                     target_cen, idx, points, opt.w,
                                     opt.refine_start)

                    # scene_idx = dataset.list[file_list_idx]

                    loss.backward()

                    # train_dis_avg += dis.item()
                    train_count += 1

                    if train_count % opt.batch_size == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3}'.
                            format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size),
                                train_count))
                        optimizer.step()
                        # for param_lr in optimizer.module.param_groups:
                        #         param_lr['lr'] /= 2
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count % 8 == 0:
                        print(pred_on_plane.max())
                        print(pred_on_plane.mean())
                        print(idx)

                    if train_count != 0 and train_count % 1000 == 0:
                        if opt.refine_start:
                            torch.save(
                                refiner.state_dict(),
                                '{0}/pose_refine_model_current.pth'.format(
                                    opt.outf))
                        else:
                            torch.save(
                                estimator.state_dict(),
                                '{0}/pose_model_current.pth'.format(opt.outf))

            print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.
                  format(epoch))

            logger = setup_logger(
                'epoch%d_test' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
            logger.info('Test time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Testing started'))
            test_loss = 0.0
            test_count = 0
            estimator.eval()

            logger.info(
                'Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), epoch,
                    test_loss))
            print(pred_on_plane.max())
            print(pred_on_plane.mean())
            bs, num_p, _ = pred_on_plane.size()
            # if epoch % 40 == 0:
            #     import pdb;pdb.set_trace()
            best_test = test_loss
            best_epoch = epoch
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

            if best_test < opt.decay_margin and not opt.decay_start:
                opt.decay_start = True
                opt.lr *= opt.lr_rate
                # opt.w *= opt.w_rate
                optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        estimator.load_state_dict(
            torch.load('{0}/pose_model_{1}_{2}.pth'.format(
                opt.outf, best_epoch, best_test)))
    else:
        estimator.load_state_dict(
            torch.load('{0}/pose_model_45_0.0.pth'.format(opt.outf),
                       map_location='cpu'))
Exemplo n.º 7
0
def train_net():
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        for k in range(len(physical_devices)):
            tf.config.experimental.set_memory_growth(physical_devices[k], True)
            print(
                'memory growth:',
                tf.config.experimental.get_memory_growth(physical_devices[k]))
    else:
        print("Not enough GPU hardware devices available")
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.create_file_writer(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    logger.propagate = 0
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    # model & loss
    estimator = DeformNet(opt.n_cat, opt.nv_prior)
    estimator.cuda()
    criterion = Loss(opt.corr_wt, opt.cd_wt, opt.entropy_wt, opt.deform_wt)
    if opt.resume_model != '':
        estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    train_dataset = PoseDataset(opt.dataset,
                                'train',
                                opt.data_dir,
                                opt.n_pts,
                                opt.img_size,
                                opt.points_process,
                                vis=visflag)
    val_dataset = PoseDataset(opt.dataset,
                              'test',
                              opt.data_dir,
                              opt.n_pts,
                              opt.img_size,
                              opt.points_process,
                              vis=visflag)
    # start training
    st_time = time.time()
    train_steps = 1500
    global_step = train_steps * (opt.start_epoch - 1)
    n_decays = len(opt.decay_epoch)
    assert len(opt.decay_rate) == n_decays
    for i in range(n_decays):
        if opt.start_epoch > opt.decay_epoch[i]:
            decay_count = i
    current_lr = opt.lr * opt.decay_rate[decay_count]
    optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
    train_size = train_steps * opt.batch_size
    indices = []
    page_start = -train_size
    for epoch in range(opt.start_epoch, opt.max_epoch + 1):
        # train one epoch
        logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
                    ', ' + 'Epoch %02d' % epoch + ', ' + 'Training started'))
        # # create optimizer and adjust learning rate if needed
        # if decay_count < len(opt.decay_rate):
        #     if epoch > opt.decay_epoch[decay_count]:
        #         current_lr = opt.lr * opt.decay_rate[decay_count]
        #         optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
        #         decay_count += 1
        # sample train subset
        page_start += train_size
        len_last = len(indices) - page_start
        if len_last < train_size:
            indices = indices[page_start:]
            if opt.dataset == 'CAMERA+Real':
                # CAMERA : Real = 3 : 1
                camera_len = train_dataset.subset_len[0]
                real_len = train_dataset.subset_len[1]
                real_indices = list(range(camera_len, camera_len + real_len))
                camera_indices = list(range(camera_len))
                n_repeat = (train_size - len_last) // (4 * real_len) + 1
                data_list = random.sample(camera_indices, 3 * n_repeat *
                                          real_len) + real_indices * n_repeat
                random.shuffle(data_list)
                indices += data_list
            else:
                data_list = list(range(train_dataset.length))
                for i in range((train_size - len_last) //
                               train_dataset.length + 1):
                    random.shuffle(data_list)
                    indices += data_list
            page_start = 0
        train_idx = indices[page_start:(page_start + train_size)]
        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_idx)
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=opt.batch_size,
            sampler=train_sampler,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.train()
        for i, data in enumerate(train_dataloader, 1):
            points, points_pro, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points_pro = points_pro.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points_pro, rgb, choose, cat_id,
                                           prior)
            loss, corr_loss, cd_loss, entropy_loss, deform_loss = criterion(
                assign_mat, deltas, prior, nocs, model)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            global_step += 1
            # write results to tensorboard
            with tb_writer.as_default():
                tf.summary.scalar('learning_rate',
                                  current_lr,
                                  step=global_step)
                tf.summary.scalar('train_loss', loss.item(), step=global_step)
                tf.summary.scalar('corr_loss',
                                  corr_loss.item(),
                                  step=global_step)
                tf.summary.scalar('cd_loss', cd_loss.item(), step=global_step)
                tf.summary.scalar('entropy_loss',
                                  entropy_loss.item(),
                                  step=global_step)
                tf.summary.scalar('deform_loss',
                                  deform_loss.item(),
                                  step=global_step)
                tb_writer.flush()

            if i % 10 == 0:
                logger.info(
                    'Batch {0} Loss:{1:f}, corr_loss:{2:f}, cd_loss:{3:f}, entropy_loss:{4:f}, deform_loss:{5:f}'
                    .format(i, loss.item(), corr_loss.item(), cd_loss.item(),
                            entropy_loss.item(), deform_loss.item()))
        # adjust learning rate if needed
        if decay_count < len(opt.decay_rate):
            if epoch >= opt.decay_epoch[decay_count]:
                current_lr = opt.lr * opt.decay_rate[decay_count]
                optimizer = torch.optim.Adam(estimator.parameters(),
                                             lr=current_lr)
                decay_count += 1

        logger.info(
            '>>>>>>>>----------Epoch {:02d} train finish---------<<<<<<<<'.
            format(epoch))

        # evaluate one epoch
        logger.info('Time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Epoch %02d' % epoch + ', ' + 'Testing started'))
        val_loss = 0.0
        total_count = np.zeros((opt.n_cat, ), dtype=int)
        strict_success = np.zeros((opt.n_cat, ),
                                  dtype=int)  # 5 degree and 5 cm
        easy_success = np.zeros((opt.n_cat, ), dtype=int)  # 10 degree and 5 cm
        iou_success = np.zeros((opt.n_cat, ),
                               dtype=int)  # relative scale error < 0.1
        # sample validation subset
        # opt.val_size = 2500
        val_idx = random.sample(list(range(val_dataset.length)), opt.val_size)
        val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_idx)
        val_dataloader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=1,
            sampler=val_sampler,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.eval()
        for i, data in enumerate(val_dataloader, 1):
            points, points_pro, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points_pro = points_pro.cuda()
            points = points.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points_pro, rgb, choose, cat_id,
                                           prior)
            loss, _, _, _, _ = criterion(assign_mat, deltas, prior, nocs,
                                         model)
            # estimate pose and scale
            inst_shape = prior + deltas
            assign_mat = F.softmax(assign_mat, dim=2)
            nocs_coords = torch.bmm(assign_mat, inst_shape)
            nocs_coords = nocs_coords.detach().cpu().numpy()[0]
            points = points.cpu().numpy()[0]
            # use choose to remove repeated points
            choose = choose.cpu().numpy()[0]
            _, choose = np.unique(choose, return_index=True)
            nocs_coords = nocs_coords[choose, :]
            points = points[choose, :]
            _, _, _, pred_sRT = estimateSimilarityTransform(
                nocs_coords, points)
            # evaluate pose
            cat_id = cat_id.item()
            if pred_sRT is not None:
                sRT = sRT.detach().cpu().numpy()[0]
                R_error, T_error, IoU = compute_sRT_errors(pred_sRT, sRT)
                if R_error < 5 and T_error < 0.05:
                    strict_success[cat_id] += 1
                if R_error < 10 and T_error < 0.05:
                    easy_success[cat_id] += 1
                if IoU < 0.1:
                    iou_success[cat_id] += 1
            total_count[cat_id] += 1
            val_loss += loss.item()
            if i % 100 == 0:
                logger.info('Batch {0} Loss:{1:f}'.format(i, loss.item()))
        # compute accuracy
        strict_acc = 100 * (strict_success / total_count)
        easy_acc = 100 * (easy_success / total_count)
        iou_acc = 100 * (iou_success / total_count)
        for i in range(opt.n_cat):
            logger.info('{} accuracies:'.format(val_dataset.cat_names[i]))
            logger.info('5^o 5cm: {:4f}'.format(strict_acc[i]))
            logger.info('10^o 5cm: {:4f}'.format(easy_acc[i]))
            logger.info('IoU < 0.1: {:4f}'.format(iou_acc[i]))
        strict_acc = np.mean(strict_acc)
        easy_acc = np.mean(easy_acc)
        iou_acc = np.mean(iou_acc)
        val_loss = val_loss / opt.val_size
        with tb_writer.as_default():
            tf.summary.scalar('val_loss', val_loss, step=global_step)
            tf.summary.scalar('5^o5cm_acc', strict_acc, step=global_step)
            tf.summary.scalar('10^o5cm_acc', easy_acc, step=global_step)
            tf.summary.scalar('iou_acc', iou_acc, step=global_step)
            tb_writer.flush()
        logger.info('Epoch {0:02d} test average loss: {1:06f}'.format(
            epoch, val_loss))
        logger.info('Overall accuracies:')
        logger.info('5^o 5cm: {:4f} 10^o 5cm: {:4f} IoU: {:4f}'.format(
            strict_acc, easy_acc, iou_acc))
        logger.info(
            '>>>>>>>>----------Epoch {:02d} test finish---------<<<<<<<<'.
            format(epoch))
        # save model after each epoch
        torch.save(estimator.state_dict(),
                   '{0}/model_{1:02d}.pth'.format(opt.result_dir, epoch))
def main():
    # g13: parameter setting -------------------
    batch_id = 1
    
    opt.dataset ='linemod'
    opt.dataset_root = './datasets/linemod/Linemod_preprocessed'
    estimator_path = 'trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth'
    refiner_path = 'trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth'
    opt.resume_posenet = estimator_path
    opt.resume_posenet = refiner_path
    dataset_config_dir = 'datasets/linemod/dataset_config'
    output_result_dir = 'experiments/eval_result/linemod'
    bs = 1 #fixed because of the default setting in torch.utils.data.DataLoader
    opt.iteration = 2 #default is 4 in eval_linemod.py
    t1_idx = 0
    t1_total_eval_num = 3
    
    axis_range = 0.1   # the length of X, Y, and Z axis in 3D
    vimg_dir = 'verify_img'
    if not os.path.exists(vimg_dir):
        os.makedirs(vimg_dir)
    #-------------------------------------------
    
    if opt.dataset == 'ycb':
        opt.num_objects = 21 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return
    
    estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load(estimator_path))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load(refiner_path))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)


    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
    print('complete loading testing loader\n')
    opt.sym_list = test_dataset.get_sym_list()
    opt.num_points_mesh = test_dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\n\
        length of the testing set: {0}\nnumber of sample points on mesh: {1}\n\
        symmetry object list: {2}'\
        .format( len(test_dataset), opt.num_points_mesh, opt.sym_list))
    
    
    
    #load pytorch model
    estimator.eval()    
    refiner.eval()
    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
    fw = open('{0}/t1_eval_result_logs.txt'.format(output_result_dir), 'w')

    #Pose estimation
    for j, data in enumerate(testdataloader, 0):
        # g13: modify this part for evaluation target--------------------
        if j == t1_total_eval_num:
            break
        #----------------------------------------------------------------
        points, choose, img, target, model_points, idx = data
        if len(points.size()) == 2:
            print('No.{0} NOT Pass! Lost detection!'.format(j))
            fw.write('No.{0} NOT Pass! Lost detection!\n'.format(j))
            continue
        points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
        pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
        _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

        #if opt.refine_start: #iterative poserefinement
        #    for ite in range(0, opt.iteration):
        #        pred_r, pred_t = refiner(new_points, emb, idx)
        #        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
        
        pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, opt.num_points, 1)
        pred_c = pred_c.view(bs, opt.num_points)
        how_max, which_max = torch.max(pred_c, 1)
        pred_t = pred_t.view(bs * opt.num_points, 1, 3)
    
        my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
        my_t = (points.view(bs * opt.num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
        my_pred = np.append(my_r, my_t)
    
        for ite in range(0, opt.iteration):
            T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(opt.num_points, 1).contiguous().view(1, opt.num_points, 3)
            my_mat = quaternion_matrix(my_r)
            R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
            my_mat[0:3, 3] = my_t
            
            new_points = torch.bmm((points - T), R).contiguous()
            pred_r, pred_t = refiner(new_points, emb, idx)
            pred_r = pred_r.view(1, 1, -1)
            pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
            my_r_2 = pred_r.view(-1).cpu().data.numpy()
            my_t_2 = pred_t.view(-1).cpu().data.numpy()
            my_mat_2 = quaternion_matrix(my_r_2)
            my_mat_2[0:3, 3] = my_t_2
    
            my_mat_final = np.dot(my_mat, my_mat_2)
            my_r_final = copy.deepcopy(my_mat_final)
            my_r_final[0:3, 3] = 0
            my_r_final = quaternion_from_matrix(my_r_final, True)
            my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
    
            my_pred = np.append(my_r_final, my_t_final)
            my_r = my_r_final
            my_t = my_t_final

        # g13: start drawing pose on image------------------------------------
        # pick up image
        print("index {0}: {1}".format(j, test_dataset.list_rgb[j]))
        img = Image.open(test_dataset.list_rgb[j])
        
        # pick up center position by bbox
        meta_file = open('{0}/data/{1}/gt.yml'.format(opt.dataset_root, '%02d' % test_dataset.list_obj[j]), 'r')
        meta = {}
        meta = yaml.load(meta_file)
        which_item = test_dataset.list_rank[j]
        bbx = meta[which_item][0]['obj_bb']
        draw = ImageDraw.Draw(img) 
        
        # draw box (ensure this is the right object)
        draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        
        #get center
        c_x = bbx[0]+int(bbx[2]/2)
        c_y = bbx[1]+int(bbx[3]/2)
        draw.point((c_x,c_y), fill=(255,255,0))
        
        #get the 3D position of center
        cam_intrinsic = np.zeros((3,3))
        cam_intrinsic.itemset(0, test_dataset.cam_fx)
        cam_intrinsic.itemset(4, test_dataset.cam_fy)
        cam_intrinsic.itemset(2, test_dataset.cam_cx)
        cam_intrinsic.itemset(5, test_dataset.cam_cy)
        cam_intrinsic.itemset(8, 1)
        cam_extrinsic = my_mat_final[0:3, :]
        cam2d_3d = np.matmul(cam_intrinsic, cam_extrinsic)
        cen_3d = np.matmul(np.linalg.pinv(cam2d_3d), [[c_x],[c_y],[1]])
        # replace img.show() with plt.imshow(img)
        
        #transpose three 3D axis point into 2D
        x_3d = cen_3d + [[axis_range],[0],[0],[0]]
        y_3d = cen_3d + [[0],[axis_range],[0],[0]]
        z_3d = cen_3d + [[0],[0],[axis_range],[0]]
        x_2d = np.matmul(cam2d_3d, x_3d)
        y_2d = np.matmul(cam2d_3d, y_3d)
        z_2d = np.matmul(cam2d_3d, z_3d)
        
        #draw the axis on 2D
        draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5)
        draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5)
        draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5)

        #g13: show image
        #img.show()
        
        #save file under file 
        img_file_name = '{0}/pred_obj{1}_pic{2}.png'.format(vimg_dir, test_dataset.list_obj[j], which_item)
        img.save( img_file_name, "PNG" )
        img.close()
Exemplo n.º 9
0
def main():
    class_id = 0
    class_file = open('datasets/ycb/dataset_config/classes.txt')
    cld = {}
    while 1:
        class_input = class_file.readline()
        if not class_input:
            break

        input_file = open('{0}/models/{1}/points.xyz'.format(
            opt.dataset_root, class_input[:-1]))
        cld[class_id] = []
        while 1:
            input_line = input_file.readline()
            if not input_line:
                break
            input_line = input_line[:-1].split(' ')
            cld[class_id].append([
                float(input_line[0]),
                float(input_line[1]),
                float(input_line[2])
            ])
        cld[class_id] = np.array(cld[class_id])
        input_file.close()

        class_id += 1

    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    symmetry_obj_idx = [12, 15, 18, 19, 20]

    if opt.dataset == 'ycb':
        opt.num_objects = 21  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.outf = 'trained_models/ycb/' + opt.output_dir  # folder to save trained models
        opt.test_output = 'experiments/output/ycb/' + opt.output_dir
        if not os.path.exists(opt.test_output):
            os.makedirs(opt.test_output, exist_ok=True)

        opt.repeat_epoch = 1  # number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        object_max=opt.object_max)
    estimator.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

        opt.refine_start = False
        opt.decay_start = False

    dataset = PoseDataset_ycb('train', opt.num_points, False, opt.dataset_root,
                              opt.noise_trans, opt.seg_type, True)
    test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                   opt.dataset_root, 0.0, opt.seg_type, True)

    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)

    logger = setup_logger(
        'final_eval_tf_with_seg_square',
        os.path.join(opt.test_output, 'final_eval_tf_with_seg_square.txt'))

    object_max = opt.object_max
    total_test_dis = {key: [] for key in range(0, object_max)}
    total_test_count = {key: [] for key in range(0, object_max)}
    dir_test_dis = {key: [] for key in range(0, object_max)}
    dir_test_count = {key: [] for key in range(0, object_max)}

    # for add
    total_unseen_objects = {key: [] for key in range(0, object_max)}
    total_object_without_pose = {key: [] for key in range(0, object_max)}
    dir_add_count = {key: [] for key in range(0, object_max)}
    dir_add_count_unseen = {key: [] for key in range(0, object_max)}
    dir_add_02_count_unseen = {key: [] for key in range(0, object_max)}
    dir_add_pure_count = {key: [] for key in range(0, object_max)}
    dir_add_s_count = {key: [] for key in range(0, object_max)}
    dir_add_02_count = {key: [] for key in range(0, object_max)}
    dir_add_pure_02_count = {key: [] for key in range(0, object_max)}
    dir_add_s_02_count = {key: [] for key in range(0, object_max)}

    total_add_count = {key: [] for key in range(0, object_max)}
    total_add_count_unseen = {key: [] for key in range(0, object_max)}
    total_add_02_count_unseen = {key: [] for key in range(0, object_max)}
    total_add_pure_count = {key: [] for key in range(0, object_max)}
    total_add_s_count = {key: [] for key in range(0, object_max)}
    total_add_02_count = {key: [] for key in range(0, object_max)}
    total_add_pure_02_count = {key: [] for key in range(0, object_max)}
    total_add_s_02_count = {key: [] for key in range(0, object_max)}

    dir_dbd_count = {key: [] for key in range(0, object_max)}
    dir_drr_count = {key: [] for key in range(0, object_max)}
    dir_ada_count = {key: [] for key in range(0, object_max)}
    dir_distance_1_count = {key: [] for key in range(0, object_max)}

    total_dbd_count = {key: [] for key in range(0, object_max)}
    total_drr_count = {key: [] for key in range(0, object_max)}
    total_ada_count = {key: [] for key in range(0, object_max)}
    total_distance_1_count = {key: [] for key in range(0, object_max)}

    last_dis = {key: [] for key in range(0, object_max)}
    for i in range(object_max):
        total_unseen_objects[i] = 0
        total_object_without_pose[i] = 0

        total_test_dis[i] = 0.
        total_test_count[i] = 0
        dir_test_dis[i] = 0.
        dir_test_count[i] = 0
        # for add
        dir_add_count[i] = 0
        dir_add_count_unseen[i] = 0
        dir_add_02_count_unseen[i] = 0
        dir_add_pure_count[i] = 0
        dir_add_s_count[i] = 0
        dir_add_02_count[i] = 0
        total_add_count[i] = 0
        total_add_count_unseen[i] = 0
        total_add_02_count_unseen[i] = 0
        total_add_pure_count[i] = 0
        total_add_s_count[i] = 0
        total_add_02_count[i] = 0
        dir_add_pure_02_count[i] = 0
        dir_add_s_02_count[i] = 0
        total_add_pure_02_count[i] = 0
        total_add_s_02_count[i] = 0

        #   for stable
        dir_dbd_count[i] = 0.
        dir_drr_count[i] = 0
        dir_ada_count[i] = 0.
        dir_distance_1_count[i] = 0.

        total_dbd_count[i] = 0.
        total_drr_count[i] = 0
        total_ada_count[i] = 0.
        total_distance_1_count[i] = 0.
        last_dis[i] = None

    st_time = time.time()
    isFirstInitLastDatafolder = True
    estimator.eval()
    with torch.no_grad():
        for j, data in enumerate(testdataloader, 0):
            if opt.dataset == 'ycb':
                list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                list_full_img, list_focal_length, list_principal_point, list_motion = data
            output_image = Image.open('{0}/{1}-color-masked-square.png'.format(
                opt.dataset_root, list_filename[0][0]))
            OUTPUT_IMAGE_PATH = '{0}/{1}-color-seg-square-output-tf.png'.format(
                opt.dataset_root, list_filename[0][0])
            for list_index in range(len(list_points)):
                points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point, motion \
                    = list_points[list_index], list_choose[list_index], list_img[list_index], \
                      list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                      list_filename[list_index], list_full_img[list_index], list_focal_length[list_index], \
                      list_principal_point[list_index], list_motion[list_index]

                # Temporal Clean when Changing datafolder
                datafolder = filename[0].split('/')[1]
                filehead = filename[0].split('/')[2]
                if isFirstInitLastDatafolder:
                    lastdatafolder = datafolder
                    isFirstInitLastDatafolder = False
                if datafolder != lastdatafolder:
                    logger.info('changing folder from {0} to {1}'.format(
                        lastdatafolder, datafolder))
                    estimator.temporalClear(opt.object_max)
                    # handle dir output
                    for i in range(0, object_max):
                        if dir_test_count[i] != 0:
                            logger.info(
                                'Dir {0} Object {1} dis:{2} with {3} samples'.
                                format(lastdatafolder, i,
                                       dir_test_dis[i] / dir_test_count[i],
                                       dir_test_count[i]))
                            if dir_add_count[i] != 0:
                                logger.info(
                                    'Dir {0} Object {1} add:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_count[i] / dir_test_count[i],
                                        dir_add_02_count[i] /
                                        dir_add_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_count[i] / dir_test_count[i],
                                        0))
                            if dir_add_pure_count[i] != -0:
                                logger.info(
                                    'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_pure_count[i] /
                                        dir_test_count[i],
                                        dir_add_pure_02_count[i] /
                                        dir_add_pure_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_pure_count[i] /
                                        dir_test_count[i], 0))
                            if dir_add_s_count[i] != 0:
                                logger.info(
                                    'Dir {0} Object {1} add_s:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_s_count[i] / dir_test_count[i],
                                        dir_add_s_02_count[i] /
                                        dir_add_s_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add_s:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_s_count[i] / dir_test_count[i],
                                        0))
                            logger.info('Dir {0} Object {1} dbd:{2}'.format(
                                lastdatafolder, i,
                                dir_dbd_count[i] / dir_test_count[i]))
                            logger.info('Dir {0} Object {1} drr:{2}'.format(
                                lastdatafolder, i,
                                dir_drr_count[i] / dir_test_count[i]))
                            logger.info('Dir {0} Object {1} ada:{2}'.format(
                                lastdatafolder, i,
                                dir_ada_count[i] / dir_test_count[i]))
                            logger.info(
                                'Dir {0} Object {1} distance_1:{2}'.format(
                                    lastdatafolder, i,
                                    dir_distance_1_count[i] /
                                    dir_test_count[i]))

                    dir_dbd = 0.
                    dir_drr = 0.
                    dir_ada = 0.
                    dir_distance_1 = 0.
                    dir_dis = 0.
                    dir_add = 0
                    dir_add_s = 0
                    dir_add_pure = 0
                    dir_add_02 = 0
                    dir_add_s_02 = 0
                    dir_add_pure_02 = 0
                    dir_count = 0

                    for i in range(object_max):
                        if total_test_count[i] != 0:
                            dir_count += dir_test_count[i]
                            dir_dis += dir_test_dis[i]
                            dir_add += dir_add_count[i]
                            dir_add_pure += dir_add_pure_count[i]
                            dir_add_s += dir_add_s_count[i]
                            dir_add_02 += dir_add_02_count[i]
                            dir_add_pure_02 += dir_add_pure_02_count[i]
                            dir_add_s_02 += dir_add_s_02_count[i]
                            dir_dbd += dir_dbd_count[i]
                            dir_drr += dir_drr_count[i]
                            dir_ada += dir_ada_count[i]
                            dir_distance_1 += dir_distance_1_count[i]

                            dir_test_dis[i] = 0
                            dir_test_count[i] = 0
                            dir_add_count[i] = 0
                            dir_add_pure_count[i] = 0
                            dir_add_s_count[i] = 0
                            dir_add_02_count[i] = 0
                            dir_add_pure_02_count[i] = 0
                            dir_add_s_02_count[i] = 0
                            dir_dbd_count[i] = 0
                            dir_drr_count[i] = 0
                            dir_ada_count[i] = 0
                            dir_distance_1_count[i] = 0
                            last_dis[i] = None

                    logger.info(
                        'Dir {0} \'s total dis:{1} with {2} samples'.format(
                            lastdatafolder, dir_dis / dir_count, dir_count))
                    logger.info(
                        'Dir {0} \'s total add:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add / dir_count,
                            dir_add_02 / dir_add))
                    logger.info(
                        'Dir {0} \'s total add_s:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add_s / dir_count,
                            dir_add_s_02 / dir_add_s))
                    logger.info(
                        'Dir {0} \'s total add_pure:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add_pure / dir_count,
                            dir_add_pure_02 / dir_add_pure))
                    logger.info('Dir {0} \'s total dbd:{1}'.format(
                        lastdatafolder, dir_dbd / dir_count))
                    logger.info('Dir {0} \'s total drr:{1}'.format(
                        lastdatafolder, dir_drr / dir_count))
                    logger.info('Dir {0} \'s total ada:{1}'.format(
                        lastdatafolder, dir_ada / dir_count))
                    logger.info('Dir {0} \'s total distance_1:{1}'.format(
                        lastdatafolder, dir_distance_1 / dir_count))

                    # end of handle dir output

                lastdatafolder = datafolder

                points, choose, img, target, model_points, idx = points.cuda(), \
                                                                 choose.cuda(), \
                                                                 img.cuda(), \
                                                                 target.cuda(), \
                                                                 model_points.cuda(), \
                                                                 idx.cuda()
                cloud_path = "experiments/clouds/ycb/{0}/{1}/{2}/{3}_{4}".format(
                    opt.output_dir, 1, datafolder, filehead,
                    int(idx))  # folder to save logs

                pred_r, pred_t, pred_c, x_return = estimator(
                    img, points, choose, idx, focal_length, principal_point,
                    motion, cloud_path)

                # count for unseen object
                if pred_r is None:
                    last_dis[int(idx)] = None
                    total_unseen_objects[int(idx)] += 1
                    total_object_without_pose[int(idx)] += 1
                    continue

                pred_r_ori = copy.deepcopy(pred_r)
                pred_t_ori = copy.deepcopy(pred_t)
                pred_c_ori = copy.deepcopy(pred_c)
                x_return_ori = copy.deepcopy(x_return)

                gt_r, gt_t = get_target(opt.dataset_root, filename, idx)
                if gt_r is None: print('gtr is None')
                is_sym = int(idx) in symmetry_obj_idx
                dis, dis_vector, pred_cloud = calDistance(
                    pred_r_ori, pred_t_ori, pred_c_ori, x_return_ori, gt_r,
                    gt_t, cld[int(idx)], is_sym)
                dis_s, dis_vector_s, _ = calDistance(pred_r_ori, pred_t_ori,
                                                     pred_c_ori, x_return_ori,
                                                     gt_r, gt_t, cld[int(idx)],
                                                     True)
                dis_pure, dis_vector_pure, _ = calDistance(
                    pred_r_ori, pred_t_ori, pred_c_ori, x_return_ori, gt_r,
                    gt_t, cld[int(idx)], False)

                if last_dis[int(idx)] is not None:
                    dir_dbd_count[int(idx)] += torch.norm(dis_vector -
                                                          last_dis[int(idx)])
                    total_dbd_count[int(idx)] += torch.norm(dis_vector -
                                                            last_dis[int(idx)])
                    dir_distance_1_count[int(idx)] += torch.norm(
                        (dis_vector / torch.norm(dis_vector)) -
                        (last_dis[int(idx)] / torch.norm(last_dis[int(idx)])))
                    total_distance_1_count[int(idx)] += torch.norm(
                        (dis_vector / torch.norm(dis_vector)) -
                        (last_dis[int(idx)] / torch.norm(last_dis[int(idx)])))
                    if torch.dot(last_dis[int(idx)], dis_vector) < 0:
                        dir_drr_count[int(idx)] += 1
                        total_drr_count[int(idx)] += 1
                    dir_ada_count[int(idx)] += torch.acos(
                        (torch.dot(last_dis[int(idx)], dis_vector)) /
                        (torch.norm(last_dis[int(idx)]) *
                         torch.norm(dis_vector)))
                    total_ada_count[int(idx)] += torch.acos(
                        (torch.dot(last_dis[int(idx)], dis_vector)) /
                        (torch.norm(last_dis[int(idx)]) *
                         torch.norm(dis_vector)))

                last_dis[int(idx)] = dis_vector

                # calc adds
                if img.shape[1] != 0:
                    dir_test_dis[int(idx)] += dis.item()

                    total_test_dis[int(idx)] += dis.item()
                    dir_test_count[int(idx)] += 1
                    total_test_count[int(idx)] += 1

                    if dis < 0.1:
                        dir_add_count[int(idx)] += 1
                        total_add_count[int(idx)] += 1
                    if dis < 0.02:
                        dir_add_02_count[int(idx)] += 1
                        total_add_02_count[int(idx)] += 1
                    if dis_s < 0.1:
                        dir_add_s_count[int(idx)] += 1
                        total_add_s_count[int(idx)] += 1
                    if dis_s < 0.02:
                        dir_add_s_02_count[int(idx)] += 1
                        total_add_s_02_count[int(idx)] += 1
                    if dis_pure < 0.1:
                        dir_add_pure_count[int(idx)] += 1
                        total_add_pure_count[int(idx)] += 1
                    if dis_pure < 0.02:
                        dir_add_pure_02_count[int(idx)] += 1
                        total_add_pure_02_count[int(idx)] += 1
                else:
                    last_dis[int(idx)] = None
                    if dis < 0.1:
                        dir_add_count_unseen[int(idx)] += 1
                        total_add_count_unseen[int(idx)] += 1
                        total_unseen_objects[int(idx)] += 1
                    if dis < 0.02:
                        dir_add_02_count_unseen[int(idx)] += 1
                        total_add_02_count_unseen[int(idx)] += 1
                        total_unseen_objects[int(idx)] += 1

                output_image = output_transformed_image(
                    OUTPUT_IMAGE_PATH, output_image, pred_cloud, focal_length,
                    principal_point, int(idx))
                logger.info('Test time {0} Test Frame {1} {2} dis:{3}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    filename, idx.item(), dis))

            output_image.save(OUTPUT_IMAGE_PATH)

        # handle dir output
        for i in range(0, object_max):
            if dir_test_count[i] != 0:
                logger.info(
                    'Dir {0} Object {1} dis:{2} with {3} samples'.format(
                        lastdatafolder, i, dir_test_dis[i] / dir_test_count[i],
                        dir_test_count[i]))
                if dir_add_count[i] != 0:
                    logger.info(
                        'Dir {0} Object {1} add:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_count[i] / dir_test_count[i],
                            dir_add_02_count[i] / dir_add_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_count[i] / dir_test_count[i], 0))
                if dir_add_pure_count[i] != -0:
                    logger.info(
                        'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'.
                        format(
                            lastdatafolder, i,
                            dir_add_pure_count[i] / dir_test_count[i],
                            dir_add_pure_02_count[i] / dir_add_pure_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'.
                        format(lastdatafolder, i,
                               dir_add_pure_count[i] / dir_test_count[i], 0))
                if dir_add_s_count[i] != 0:
                    logger.info(
                        'Dir {0} Object {1} add_s:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_s_count[i] / dir_test_count[i],
                            dir_add_s_02_count[i] / dir_add_s_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add_s:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_s_count[i] / dir_test_count[i], 0))
                logger.info('Dir {0} Object {1} dbd:{2}'.format(
                    lastdatafolder, i, dir_dbd_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} drr:{2}'.format(
                    lastdatafolder, i, dir_drr_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} ada:{2}'.format(
                    lastdatafolder, i, dir_ada_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} distance_1:{2}'.format(
                    lastdatafolder, i,
                    dir_distance_1_count[i] / dir_test_count[i]))

        dir_dbd = 0.
        dir_drr = 0.
        dir_ada = 0.
        dir_distance_1 = 0.
        dir_dis = 0.
        dir_add = 0
        dir_add_s = 0
        dir_add_pure = 0
        dir_add_02 = 0
        dir_add_s_02 = 0
        dir_add_pure_02 = 0
        dir_count = 0

        for i in range(object_max):
            if total_test_count[i] != 0:
                dir_count += dir_test_count[i]
                dir_dis += dir_test_dis[i]
                dir_add += dir_add_count[i]
                dir_add_pure += dir_add_pure_count[i]
                dir_add_s += dir_add_s_count[i]
                dir_add_02 += dir_add_02_count[i]
                dir_add_pure_02 += dir_add_pure_02_count[i]
                dir_add_s_02 += dir_add_s_02_count[i]
                dir_dbd += dir_dbd_count[i]
                dir_drr += dir_drr_count[i]
                dir_ada += dir_ada_count[i]
                dir_distance_1 += dir_distance_1_count[i]

                dir_test_dis[i] = 0
                dir_test_count[i] = 0
                dir_add_count[i] = 0
                dir_add_pure_count[i] = 0
                dir_add_s_count[i] = 0
                dir_add_02_count[i] = 0
                dir_add_pure_02_count[i] = 0
                dir_add_s_02_count[i] = 0
                dir_dbd_count[i] = 0
                dir_drr_count[i] = 0
                dir_ada_count[i] = 0
                dir_distance_1_count[i] = 0

        logger.info('Dir {0} \'s total dis:{1} with {2} samples'.format(
            lastdatafolder, dir_dis / dir_count, dir_count))
        logger.info('Dir {0} \'s total add:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add / dir_count, dir_add_02 / dir_add))
        logger.info('Dir {0} \'s total add_s:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add_s / dir_count, dir_add_s_02 / dir_add_s))
        logger.info('Dir {0} \'s total add_pure:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add_pure / dir_count,
            dir_add_pure_02 / dir_add_pure))
        logger.info('Dir {0} \'s total dbd:{1}'.format(lastdatafolder,
                                                       dir_dbd / dir_count))
        logger.info('Dir {0} \'s total drr:{1}'.format(lastdatafolder,
                                                       dir_drr / dir_count))
        logger.info('Dir {0} \'s total ada:{1}'.format(lastdatafolder,
                                                       dir_ada / dir_count))
        logger.info('Dir {0} \'s total distance_1:{1}'.format(
            lastdatafolder, dir_distance_1 / dir_count))

        # end of handle dir output

        # handle global output
        total_unseen_count = 0
        total_without_pose_count = 0
        total_add_count_unseen_count = 0
        total_add_02_count_unseen_count = 0
        total_drr = 0.
        total_dbd = 0.
        total_ada = 0.
        total_distance_1 = 0.
        total_dis = 0.
        total_add = 0
        total_add_s = 0
        total_add_pure = 0
        total_add_02 = 0
        total_add_s_02 = 0
        total_add_pure_02 = 0
        total_count = 0
        for i in range(object_max):
            if total_test_count[i] != 0:
                logger.info(
                    'Total: Object {0} dis:{1} with {2} samples'.format(
                        i, total_test_dis[i] / total_test_count[i],
                        total_test_count[i]))
                logger.info('Total: Object {0} add:{1} with 0.02: {2}'.format(
                    i, total_add_count[i] / total_test_count[i],
                    total_add_02_count[i] / total_add_count[i]))
                logger.info('Total: Object {0} drr:{1}'.format(
                    i, total_drr_count[i] / total_test_count[i]))
                logger.info('Total: Object {0} ada:{1}'.format(
                    i, total_ada_count[i] / total_test_count[i]))
                logger.info('Total: Object {0} distance_1:{1}'.format(
                    i, total_distance_1_count[i] / total_test_count[i]))
                if total_unseen_objects[i] != 0:
                    if total_unseen_objects[i] - total_object_without_pose[
                            i] != 0:
                        logger.info(
                            'Total: Unseen Object {0} add:{1} with 0.02: {2} with {3} samples '
                            .format(
                                i, total_add_count_unseen[i] /
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i]),
                                total_add_02_count_unseen[i] /
                                total_add_count_unseen[i],
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i])))
                    logger.info(
                        'Total: Object {0} unseen :{1} times, {2} of them without poses, success rate:{3}'
                        .format(i, total_unseen_objects[i],
                                total_object_without_pose[i],
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i]) /
                                total_unseen_objects[i]))

                total_unseen_count += total_unseen_objects[i]
                total_without_pose_count += total_object_without_pose[i]
                total_count += total_test_count[i]
                total_dis += total_test_dis[i]
                total_add += total_add_count[i]
                total_add_count_unseen_count += total_add_count_unseen[i]
                total_add_02_count_unseen_count += total_add_02_count_unseen[i]
                total_add_s += total_add_s_count[i]
                total_add_pure += total_add_pure_count[i]
                total_add_02 += total_add_02_count[i]
                total_add_s_02 += total_add_s_02_count[i]
                total_add_pure_02 += total_add_pure_02_count[i]
                total_dbd += total_dbd_count[i]
                total_drr += total_drr_count[i]
                total_ada += total_ada_count[i]
                total_distance_1 += total_distance_1_count[i]
        logger.info('total dis:{0} with {1} samples'.format(
            total_dis / total_count, total_count))
        logger.info('total add:{0} with 0.02: {1}'.format(
            total_add / total_count, total_add_02 / total_add))
        logger.info('total unseen add:{0} with 0.02: {1}'.format(
            total_add_count_unseen_count /
            (total_unseen_count - total_without_pose_count),
            total_add_02_count_unseen_count / total_add_count_unseen_count))
        logger.info('total add_pure:{0} with 0.02: {1}'.format(
            total_add_pure / total_count, total_add_pure_02 / total_add_pure))
        logger.info('total add_s:{0} with 0.02: {1}'.format(
            total_add_s / total_count, total_add_s_02 / total_add_s))
        logger.info(
            'detected unseen object :{0}, failed calculate {1} poses with success rate: {2}'
            .format(total_unseen_count, total_without_pose_count,
                    (total_unseen_count - total_without_pose_count) /
                    total_unseen_count))
        logger.info('Total drr:{0}'.format(total_drr / total_count))
        logger.info('Total ada:{0}'.format(total_ada / total_count))
        logger.info('Total distance_1:{0}'.format(total_distance_1 /
                                                  total_count))
Exemplo n.º 10
0
def main():
    if opt.dataset == 'linemod':
        opt.num_obj = 1
        opt.list_obj = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
        opt.occ_list_obj = [1, 5, 6, 8, 9, 10, 11, 12]
        opt.list_name = ['ape', 'benchvise', 'cam', 'can', 'cat', 'driller', 'duck', 'eggbox', 'glue', 'holepuncher', 'iron', 'lamp', 'phone']
        obj_name = opt.list_name[opt.list_obj.index(opt.obj_id)]
        opt.sym_list = [10, 11]
        opt.num_points = 500
        meta_file = open('{0}/models/models_info.yml'.format(opt.dataset_root), 'r')
        meta = yaml.load(meta_file)
        diameter = meta[opt.obj_id]['diameter'] / 1000.0 * 0.1
        if opt.render:
            opt.repeat_num = 1
        elif opt.fuse:
            opt.repeat_num = 1
        else:
            opt.repeat_num = 5
        writer = SummaryWriter('experiments/runs/linemod/{}{}'.format(obj_name, opt.experiment_name))
        opt.outf = 'trained_models/linemod/{}{}'.format(obj_name, opt.experiment_name)
        opt.log_dir = 'experiments/logs/linemod/{}{}'.format(obj_name, opt.experiment_name)
        if not os.path.exists(opt.outf):
            os.mkdir(opt.outf)
        if not os.path.exists(opt.log_dir):
            os.mkdir(opt.log_dir)
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points = opt.num_points, num_vote = 9, num_obj = opt.num_obj)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_obj)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.lr = opt.lr_refine
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset_linemod('train', opt.num_points, opt.dataset_root, opt.real, opt.render, opt.fuse, opt.obj_id)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    test_dataset = PoseDataset_linemod('test', opt.num_points, opt.dataset_root, True, False, False, opt.obj_id)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'.format(len(dataset), len(test_dataset), opt.num_points))
    if opt.obj_id in opt.occ_list_obj:
        occ_test_dataset = PoseDataset_occ('test', opt.num_points, opt.occ_dataset_root, opt.obj_id)
        occtestdataloader = torch.utils.data.DataLoader(occ_test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
        print('length of the occ testing set: {}'.format(len(occ_test_dataset)))

    criterion = Loss(opt.num_points, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points, opt.sym_list)
    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    train_scalar = 0

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_loss_avg = 0.0
        train_loss = 0.0
        train_dis_avg = 0.0
        train_dis = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()
        for rep in range(opt.repeat_num):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = data
                if len(points.size()) == 2:
                    print('pass')
                    continue
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = points.cuda(), choose.cuda(), img.cuda(), target.cuda(), model_points.cuda(), model_kp.cuda(), vertex_gt.cuda(), idx.cuda(), target_r.cuda(), target_t.cuda()
                vertex_pred, c_pred, emb = estimator(img, points, choose, idx)
                vertex_loss, pose_loss, dis, new_points, new_target = criterion(vertex_pred, vertex_gt, c_pred, points, target, model_points, model_kp, opt.obj_id, target_r, target_t)
                loss = 10 * vertex_loss + pose_loss
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_points, new_target, model_points, opt.obj_id)
                        dis.backward()
                else:
                    loss.backward()

                train_loss_avg += loss.item()
                train_loss += loss.item()
                train_dis_avg += dis.item()
                train_dis += dis.item()
                train_count += 1
                train_scalar += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_loss:{4} Avg_diss:{5}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_loss_avg / opt.batch_size, train_dis_avg / opt.batch_size))
                    writer.add_scalar('linemod training loss', train_loss_avg / opt.batch_size, train_scalar)
                    writer.add_scalar('linemod training dis', train_dis_avg / opt.batch_size, train_scalar)
                    optimizer.step()
                    optimizer.zero_grad()
                    train_loss_avg = 0
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))
        train_loss = train_loss / train_count
        train_dis = train_dis / train_count
        logger.info('Train time {0} Epoch {1} TRAIN FINISH Avg loss: {2} Avg dis: {3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, train_loss, train_dis))

        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_loss = 0.0
        test_vertex_loss = 0.0
        test_pose_loss = 0.0
        test_dis = 0.0
        test_count = 0
        success_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = data
            if len(points.size()) == 2:
                logger.info('Test time {0} Lost detection!'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time))))
                continue
            points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = points.cuda(), choose.cuda(), img.cuda(), target.cuda(), model_points.cuda(), model_kp.cuda(), vertex_gt.cuda(), idx.cuda(), target_r.cuda(), target_t.cuda()
            vertex_pred, c_pred, emb = estimator(img, points, choose, idx)
            vertex_loss, pose_loss, dis, new_points, new_target = criterion(vertex_pred, vertex_gt, c_pred, points, target, model_points, model_kp, opt.obj_id, target_r, target_t)
            loss = 10 * vertex_loss + pose_loss
            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_points, new_target, model_points, opt.obj_id)

            test_loss += loss.item()
            test_vertex_loss += vertex_loss.item()
            test_pose_loss += pose_loss.item()
            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} loss:{2} dis:{3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, loss, dis))
            if dis.item() < diameter:
                success_count += 1
            test_count += 1

        test_loss = test_loss / test_count
        test_vertex_loss = test_vertex_loss / test_count
        test_pose_loss = test_pose_loss / test_count
        test_dis = test_dis / test_count
        success_rate = float(success_count) / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg loss: {2} Avg dis: {3} Success rate: {4}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_loss, test_dis, success_rate))
        writer.add_scalar('linemod test loss', test_loss, epoch)
        writer.add_scalar('linemod test vertex loss', test_vertex_loss, epoch)
        writer.add_scalar('linemod test pose loss', test_pose_loss, epoch)
        writer.add_scalar('linemod test dis', test_dis, epoch)
        writer.add_scalar('linemod success rate', success_rate, epoch)
        writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
        if test_dis <= best_test:
            best_test = test_dis
        if opt.refine_start:
            torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
        else:
            torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
        print(epoch, '>>>>>>>>----------MODEL SAVED---------<<<<<<<<')

        if opt.obj_id in opt.occ_list_obj:
            logger = setup_logger('epoch%d_occ_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_occ_test_log.txt' % epoch))
            logger.info('Occ test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
            occ_test_dis = 0.0
            occ_test_count = 0
            occ_success_count = 0
            estimator.eval()
            refiner.eval()

            for j, data in enumerate(occtestdataloader, 0):
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = data
                if len(points.size()) == 2:
                    logger.info('Occ test time {0} Lost detection!'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time))))
                    continue
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = points.cuda(), choose.cuda(), img.cuda(), target.cuda(), model_points.cuda(), model_kp.cuda(), vertex_gt.cuda(), idx.cuda(), target_r.cuda(), target_t.cuda()
                vertex_pred, c_pred, emb = estimator(img, points, choose, idx)
                vertex_loss, pose_loss, dis, new_points, new_target = criterion(vertex_pred, vertex_gt, c_pred, points, target, model_points, model_kp, opt.obj_id, target_r, target_t)
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_points, new_target, model_points, opt.obj_id)

                occ_test_dis += dis.item()
                logger.info('Occ test time {0} Test Frame No.{1} dis:{2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), occ_test_count, dis))
                if dis.item() < diameter:
                    occ_success_count += 1
                occ_test_count += 1

            occ_test_dis = occ_test_dis / occ_test_count
            occ_success_rate = float(occ_success_count) / occ_test_count
            logger.info('Occ test time {0} Epoch {1} TEST FINISH Avg dis: {2} Success rate: {3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, occ_test_dis, occ_success_rate))
            writer.add_scalar('occ test dis', occ_test_dis, epoch)
            writer.add_scalar('occ success rate', occ_success_rate, epoch)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.lr = opt.lr_refine
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
            print('>>>>>>>>----------Refine started---------<<<<<<<<')

    writer.close()
Exemplo n.º 11
0
def main():
    # g13: parameter setting -------------------
    '''
    posemodel is trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth
    refine model is trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth

    '''
    objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
    knn = KNearestNeighbor(1)
    opt.dataset ='linemod'
    opt.dataset_root = './datasets/linemod/Linemod_preprocessed'
    estimator_path = 'trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth'
    refiner_path = 'trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth'
    opt.model = estimator_path
    opt.refine_model = refiner_path
    dataset_config_dir = 'datasets/linemod/dataset_config'
    output_result_dir = 'experiments/eval_result/linemod'
    opt.refine_start = True
    bs = 1 #fixed because of the default setting in torch.utils.data.DataLoader
    opt.iteration = 2 #default is 4 in eval_linemod.py
    t1_start = True
    t1_idx = 0
    t1_total_eval_num = 3
    t2_start = False
    t2_target_list = [22, 30, 172, 187, 267, 363, 410, 471, 472, 605, 644, 712, 1046, 1116, 1129, 1135, 1263]
    #t2_target_list = [0, 1]
    axis_range = 0.1   # the length of X, Y, and Z axis in 3D
    vimg_dir = 'verify_img'
    diameter = []
    meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
    meta_d = yaml.load(meta_file)
    for obj in objlist:
        diameter.append(meta_d[obj]['diameter'] / 1000.0 * 0.1)
    print(diameter)
    if not os.path.exists(vimg_dir):
        os.makedirs(vimg_dir)
    #-------------------------------------------
    
    if opt.dataset == 'ycb':
        opt.num_objects = 21 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return
    
    estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()
  
    estimator.load_state_dict(torch.load(estimator_path))    
    refiner.load_state_dict(torch.load(refiner_path))
    opt.refine_start = True
    
    test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
    
    opt.sym_list = test_dataset.get_sym_list()
    opt.num_points_mesh = test_dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\n\
        length of the testing set: {0}\nnumber of sample points on mesh: {1}\n\
        symmetry object list: {2}'\
        .format( len(test_dataset), opt.num_points_mesh, opt.sym_list))
   
    
    #load pytorch model
    estimator.eval()    
    refiner.eval()
    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
    fw = open('{0}/t1_eval_result_logs.txt'.format(output_result_dir), 'w')

    #Pose estimation
    for j, data in enumerate(testdataloader, 0):
        # g13: modify this part for evaluation target--------------------
        if t1_start and j == t1_total_eval_num:
            break
        if t2_start and not (j in t2_target_list):
            continue
        #----------------------------------------------------------------
        points, choose, img, target, model_points, idx = data
        if len(points.size()) == 2:
            print('No.{0} NOT Pass! Lost detection!'.format(j))
            fw.write('No.{0} NOT Pass! Lost detection!\n'.format(j))
            continue
        points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
        pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
        _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

        #if opt.refine_start: #iterative poserefinement
        #    for ite in range(0, opt.iteration):
        #        pred_r, pred_t = refiner(new_points, emb, idx)
        #        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
        
        pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, opt.num_points, 1)
        pred_c = pred_c.view(bs, opt.num_points)
        how_max, which_max = torch.max(pred_c, 1)
        pred_t = pred_t.view(bs * opt.num_points, 1, 3)
    
        my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
        my_t = (points.view(bs * opt.num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
        my_pred = np.append(my_r, my_t)
    
        for ite in range(0, opt.iteration):
            T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(opt.num_points, 1).contiguous().view(1, opt.num_points, 3)
            my_mat = quaternion_matrix(my_r)
            R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
            my_mat[0:3, 3] = my_t
            
            new_points = torch.bmm((points - T), R).contiguous()
            pred_r, pred_t = refiner(new_points, emb, idx)
            pred_r = pred_r.view(1, 1, -1)
            pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
            my_r_2 = pred_r.view(-1).cpu().data.numpy()
            my_t_2 = pred_t.view(-1).cpu().data.numpy()
            my_mat_2 = quaternion_matrix(my_r_2)
            my_mat_2[0:3, 3] = my_t_2
    
            my_mat_final = np.dot(my_mat, my_mat_2)
            my_r_final = copy.deepcopy(my_mat_final)
            my_r_final[0:3, 3] = 0
            my_r_final = quaternion_from_matrix(my_r_final, True)
            my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
    
            my_pred = np.append(my_r_final, my_t_final)
            my_r = my_r_final
            my_t = my_t_final
            # Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
        
        #g13: checking the dis value
        success_count = [0 for i in range(opt.num_objects)]
        num_count = [0 for i in range(opt.num_objects)]
        model_points = model_points[0].cpu().detach().numpy()
        my_r = quaternion_matrix(my_r)[:3, :3]
        pred = np.dot(model_points, my_r.T) + my_t
        target = target[0].cpu().detach().numpy()
    
        if idx[0].item() in opt.sym_list:
            pred = torch.from_numpy(pred.astype(np.float32)).cuda().transpose(1, 0).contiguous()
            target = torch.from_numpy(target.astype(np.float32)).cuda().transpose(1, 0).contiguous()
            inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
            target = torch.index_select(target, 1, inds.view(-1) - 1)
            dis = torch.mean(torch.norm((pred.transpose(1, 0) - target.transpose(1, 0)), dim=1), dim=0).item()
        else:
            dis = np.mean(np.linalg.norm(pred - target, axis=1))
    
        if dis < diameter[idx[0].item()]:
            success_count[idx[0].item()] += 1
            print('No.{0} Pass! Distance: {1}'.format(j, dis))
            fw.write('No.{0} Pass! Distance: {1}\n'.format(j, dis))
        else:
            print('No.{0} NOT Pass! Distance: {1}'.format(j, dis))
            fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(j, dis))
        num_count[idx[0].item()] += 1
        
        # g13: start drawing pose on image------------------------------------
        # pick up image
        print('{0}:\nmy_r is {1}\nmy_t is {2}\ndis:{3}'.format(j, my_r, my_t, dis.item()))    
        print("index {0}: {1}".format(j, test_dataset.list_rgb[j]))
        img = Image.open(test_dataset.list_rgb[j])
        
        # pick up center position by bbox
        meta_file = open('{0}/data/{1}/gt.yml'.format(opt.dataset_root, '%02d' % test_dataset.list_obj[j]), 'r')
        meta = {}
        meta = yaml.load(meta_file)
        which_item = test_dataset.list_rank[j]
        which_obj = test_dataset.list_obj[j]
        which_dict = 0
        dict_leng = len(meta[which_item])
        #print('get meta[{0}][{1}][obj_bb]'.format(which_item, which_obj))
        k_idx = 0
        while 1:
            if meta[which_item][k_idx]['obj_id'] == which_obj:
                which_dict = k_idx
                break
            k_idx = k_idx+1
        
        bbx = meta[which_item][which_dict]['obj_bb']
        draw = ImageDraw.Draw(img) 
        
        # draw box (ensure this is the right object)
        draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        
        #get center
        c_x = bbx[0]+int(bbx[2]/2)
        c_y = bbx[1]+int(bbx[3]/2)
        draw.point((c_x,c_y), fill=(255,255,0))
        print('center:({0},{1})'.format(c_x, c_y))
        
        #get the 3D position of center
        cam_intrinsic = np.zeros((3,3))
        cam_intrinsic.itemset(0, test_dataset.cam_fx)
        cam_intrinsic.itemset(4, test_dataset.cam_fy)
        cam_intrinsic.itemset(2, test_dataset.cam_cx)
        cam_intrinsic.itemset(5, test_dataset.cam_cy)
        cam_intrinsic.itemset(8, 1)
        cam_extrinsic = my_mat_final[0:3, :]
        cam2d_3d = np.matmul(cam_intrinsic, cam_extrinsic)
        cen_3d = np.matmul(np.linalg.pinv(cam2d_3d), [[c_x],[c_y],[1]])
        # replace img.show() with plt.imshow(img)
        
        #transpose three 3D axis point into 2D
        x_3d = cen_3d + [[axis_range],[0],[0],[0]]
        y_3d = cen_3d + [[0],[axis_range],[0],[0]]
        z_3d = cen_3d + [[0],[0],[axis_range],[0]]
        x_2d = np.matmul(cam2d_3d, x_3d)
        y_2d = np.matmul(cam2d_3d, y_3d)
        z_2d = np.matmul(cam2d_3d, z_3d)
        
        #draw the axis on 2D
        draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5)
        draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5)
        draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5)
        
        #g13: draw the estimate pred obj
        for pti in pred:
            pti.transpose()
            pti_2d = np.matmul(cam_intrinsic, pti)
            #print('({0},{1})\n'.format(int(pti_2d[0]),int(pti_2d[1])))
            draw.point([int(pti_2d[0]),int(pti_2d[1])], fill=(255,255,0))
            
        
        #g13: show image
        #img.show()
        
        #save file under file 
        img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item)
        img.save( img_file_name, "PNG" )
        img.close()
        
        # plot ground true ----------------------------
        img = Image.open(test_dataset.list_rgb[j])
        draw = ImageDraw.Draw(img) 
        draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)        
        target_r = np.resize(np.array(meta[which_item][k_idx]['cam_R_m2c']), (3, 3))                
        target_t = np.array(meta[which_item][k_idx]['cam_t_m2c'])
        target_t = target_t[np.newaxis, :]               
        cam_extrinsic_GT = np.concatenate((target_r, target_t.T), axis=1)
        
        
        #get center 3D
        cam2d_3d_GT = np.matmul(cam_intrinsic, cam_extrinsic_GT)
        cen_3d_GT = np.matmul(np.linalg.pinv(cam2d_3d_GT), [[c_x],[c_y],[1]])
        
        #transpose three 3D axis point into 2D
        x_3d = cen_3d_GT + [[axis_range],[0],[0],[0]]
        y_3d = cen_3d_GT + [[0],[axis_range],[0],[0]]
        z_3d = cen_3d_GT + [[0],[0],[axis_range],[0]]
        
        x_2d = np.matmul(cam2d_3d_GT, x_3d)
        y_2d = np.matmul(cam2d_3d_GT, y_3d)
        z_2d = np.matmul(cam2d_3d_GT, z_3d)

        #draw the axis on 2D
        draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5)
        draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5)
        draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5)
      
       
        print('pred:\n{0}\nGT:\n{1}\n'.format(cam_extrinsic,cam_extrinsic_GT))
        print('pred 3D:{0}\nGT 3D:{1}\n'.format(cen_3d, cen_3d_GT))
        img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}_gt.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item)
        img.save( img_file_name, "PNG" )
        img.close()
        meta_file.close()
    print('\nplot_result_img.py completed the task\n')
Exemplo n.º 12
0
refiner.cuda()
estimator.load_state_dict(torch.load(opt.model))
refiner.load_state_dict(torch.load(opt.refine_model))
estimator.eval()
refiner.eval()

testdataset = PoseDataset_linemod('test', num_points, False, opt.dataset_root,
                                  0.0, True)
testdataloader = torch.utils.data.DataLoader(testdataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=8)

sym_list = testdataset.get_sym_list()
num_points_mesh = testdataset.get_num_points_mesh()
criterion = Loss(num_points_mesh, sym_list)
criterion_refine = Loss_refine(num_points_mesh, sym_list)

diameter = []
meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
meta = yaml.load(meta_file)
for obj in objlist:
    diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
print(diameter)

success_count = [0 for i in range(num_objects)]
success_count_cpy = [0 for i in range(num_objects)]
num_count = [0 for i in range(num_objects)]
fw = open('{0}/eval_result_logs_ICP_DEL2.txt'.format(output_result_dir), 'w')

import time
Exemplo n.º 13
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 3
    opt.num_points = 500
    opt.outf = 'trained_models'
    opt.log_dir = 'experiments/logs'
    opt.repeat_epoch = 20

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset('train', opt.num_points, True, opt.dataset_root,
                          opt.noise_trans, opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)

    test_dataset = PoseDataset('test', opt.num_points, False, opt.dataset_root,
                               0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()  # affects dropout and batch normalization
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                #points        ->torch.Size([500, 3])  ->在crop出来的像素区域随机选取500个点,利用相机内参结合深度值算出来的点云cloud
                #choose        ->torch.Size([1, 500])
                #img           ->torch.Size([3, 80, 80])
                #target        ->torch.Size([500, 3])  ->真实模型上随机选取的mesh点进行ground truth pose变换后得到的点
                #model_points  ->torch.Size([500, 3])  ->真实模型上随机选取的mesh点在进行pose变换前的点
                #idx           ->torch.Size([1])
                #tensor([4], device='cuda:0')
                #img和points对应rgb和点云信息,需要在网络内部fusion
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            dataset = PoseDataset('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            test_dataset = PoseDataset('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Exemplo n.º 14
0
    estimator.load_state_dict(torch.load(opt.model))
    estimator.eval()
    # data
    testdataset = PoseDataset_rbo('test', num_points, False, opt.dataset_root,
                                  0.0, True)
    sym_list = testdataset.get_sym_list()
    num_points_mesh = testdataset.get_num_points_mesh()

    #>>>>>>>>>>>>>>>>> how to get the diameter for each objects?? <<<<<<<<<<<<<<<<<<
    diameter = [1, 1, 1]
    success_count = [0 for i in range(num_objects)]
    num_count = [0 for i in range(num_objects)]
    fw = open('{0}/eval_result_logs.txt'.format(output_result_dir), 'w')

    opt.num_points = 500
    criterion = Loss(500, [7, 8])
    testdataloader = torch.utils.data.DataLoader(testdataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)
    # for i, data in enumerate(testdataloader, 0):
    index = 5
    data = testdataset.__getitem__(5)
    img, points, cloud_canon, model_points, choose, mask, num_parts, idx = data
    img = img.unsqueeze(0)
    points = points.unsqueeze(0)
    cloud_canon = cloud_canon.unsqueeze(0)
    points = Variable(points).cuda(0)
    choose = choose.view(-1, 1, opt.num_points)
    choose = Variable(choose).cuda(0)
    img = Variable(img).cuda(0)
Exemplo n.º 15
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)
            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points,
                                                   False, opt.dataset_root,
                                                   0.0, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Exemplo n.º 16
0
def main():
    if opt.dataset == 'ycb':
        opt.num_obj = 21
        opt.sym_list = [12, 15, 18, 19, 20]
        opt.num_points = 1000
        writer = SummaryWriter('experiments/runs/ycb/{0}'.format(opt.experiment_name))
        opt.outf = 'trained_models/ycb/{0}'.format(opt.experiment_name)
        opt.log_dir = 'experiments/logs/ycb/{0}'.format(opt.experiment_name)
        opt.repeat_num = 1
        if not os.path.exists(opt.outf):
            os.mkdir(opt.outf)
        if not os.path.exists(opt.log_dir):
            os.mkdir(opt.log_dir)
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points = opt.num_points, num_vote = 9, num_obj = opt.num_obj)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_obj)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.lr = opt.lr_refine
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset_ycb('train', opt.num_points, True, opt.dataset_root)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'.format(len(dataset), len(test_dataset), opt.num_points))

    criterion = Loss(opt.num_points, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points, opt.sym_list)
    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    train_scalar = 0

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_loss_avg = 0.0
        train_loss = 0.0
        train_dis_avg = 0.0
        train_dis = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()
        for rep in range(opt.repeat_num):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = data
                points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = points.cuda(), choose.cuda(), img.cuda(), target.cuda(), model_points.cuda(), model_kp.cuda(), vertex_gt.cuda(), idx.cuda(), target_r.cuda(), target_t.cuda()
                vertex_pred, c_pred, emb = estimator(img, points, choose, idx)
                vertex_loss, pose_loss, dis, new_points, new_target = criterion(vertex_pred, vertex_gt, c_pred, points, target, model_points, model_kp, idx, target_r, target_t)
                loss = 10 * vertex_loss + pose_loss
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_points, new_target, model_points, idx)
                        dis.backward()
                else:
                    loss.backward()
                train_loss_avg += loss.item()
                train_loss += loss.item()
                train_dis_avg += dis.item()
                train_dis += dis.item()
                train_count += 1
                train_scalar += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_loss:{4} Avg_diss:{5}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_loss_avg / opt.batch_size, train_dis_avg / opt.batch_size))
                    writer.add_scalar('ycb training loss', train_loss_avg / opt.batch_size, train_scalar)
                    writer.add_scalar('ycb training dis', train_dis_avg / opt.batch_size, train_scalar)
                    optimizer.step()
                    optimizer.zero_grad()
                    train_loss_avg = 0
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))
        train_loss = train_loss / train_count
        train_dis = train_dis / train_count
        logger.info('Train time {0} Epoch {1} TRAIN FINISH Avg loss: {2} Avg dis: {3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, train_loss, train_dis))

        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_loss = 0.0
        test_vertex_loss = 0.0
        test_pose_loss = 0.0
        test_dis = 0.0
        test_count = 0
        success_count = 0
        estimator.eval()
        refiner.eval()
        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = data
            points, choose, img, target, model_points, model_kp, vertex_gt, idx, target_r, target_t = points.cuda(), choose.cuda(), img.cuda(), target.cuda(), model_points.cuda(), model_kp.cuda(), vertex_gt.cuda(), idx.cuda(), target_r.cuda(), target_t.cuda()
            vertex_pred, c_pred, emb = estimator(img, points, choose, idx)
            vertex_loss, pose_loss, dis, new_points, new_target = criterion(vertex_pred, vertex_gt, c_pred, points, target, model_points, model_kp, idx, target_r, target_t)
            loss = 10 * vertex_loss + pose_loss
            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_points, new_target, model_points, idx)
            test_loss += loss.item()
            test_vertex_loss += vertex_loss.item()
            test_pose_loss += pose_loss.item()
            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} loss:{2} dis:{3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, loss, dis))
            test_count += 1
            if dis.item() < 0.02:
                success_count += 1

        test_loss = test_loss / test_count
        test_vertex_loss = test_vertex_loss / test_count
        test_pose_loss = test_pose_loss / test_count
        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg loss: {2} Avg dis: {3}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_loss, test_dis))
        logger.info('Success rate: {}'.format(float(success_count) / test_count))
        writer.add_scalar('ycb test loss', test_loss, epoch)
        writer.add_scalar('ycb test vertex loss', test_vertex_loss, epoch)
        writer.add_scalar('ycb test pose loss', test_pose_loss, epoch)
        writer.add_scalar('ycb test dis', test_dis, epoch)
        writer.add_scalar('ycb success rate', float(success_count) / test_count, epoch)
        writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
        if test_dis <= best_test:
            best_test = test_dis
        if opt.refine_start:
            torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
        else:
            torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
        print(epoch, '>>>>>>>>----------MODEL SAVED---------<<<<<<<<')

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.lr = opt.lr_refine
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
            print('>>>>>>>>----------Refine started---------<<<<<<<<')

    writer.close()
Exemplo n.º 17
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_rot'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_rot'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.MODEL_POINTS_TRANSFORMED,
        otypes.MODEL_POINTS,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(opt.dataset_root,
                         mode='train_syn_grid_valid',
                         object_list=object_list,
                         output_data=output_format,
                         resample_on_error=True,
                         preprocessors=[
                             YCBOcclusionAugmentor(opt.dataset_root),
                             ColorJitter(),
                             InplaneRotator()
                         ],
                         postprocessors=[ImageNormalizer(),
                                         PointShifter()],
                         refine=opt.refine_start,
                         image_size=[640, 480],
                         num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              refine=opt.refine_start,
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 shuffle=True,
                                                 batch_size=1,
                                                 num_workers=1)
    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))
                if (train_count >= 100000):
                    break
        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))

            test_count += 1
            if (test_count >= 3000):
                break
        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            dataset = YCBDataset(
                opt.dataset_root,
                mode='train_syn_grid',
                object_list=object_list,
                output_data=output_format,
                resample_on_error=True,
                preprocessors=[
                    YCBOcclusionAugmentor(opt.dataset_root),
                    ColorJitter(),
                    InplaneRotator()
                ],
                postprocessors=[ImageNormalizer(),
                                PointShifter()],
                refine=opt.refine_start,
                image_size=[640, 480],
                num_points=1000)
            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            test_dataset = YCBDataset(opt.dataset_root,
                                      mode='valid',
                                      object_list=object_list,
                                      output_data=output_format,
                                      resample_on_error=True,
                                      preprocessors=[],
                                      postprocessors=[ImageNormalizer()],
                                      refine=opt.refine_start,
                                      image_size=[640, 480],
                                      num_points=1000)
            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)
            opt.num_points_mesh = dataset.num_pt_mesh_large

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Exemplo n.º 18
0
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)
    # device_ids = [0,1]
    cudnn.benchmark = True
    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)

    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()
    # estimator = nn.DataParallel(estimator, device_ids=device_ids)

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        print('no refinement')
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        # optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, False,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
        # print(dataset.list)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    # print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    # criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf
    best_epoch = 0

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    count_gen = 0

    mode = 1

    if mode == 1:

        for epoch in range(opt.start_epoch, opt.nepoch):
            logger = setup_logger(
                'epoch%d' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
            logger.info('Train time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Training started'))
            train_count = 0
            train_dis_avg = 0.0
            if opt.refine_start:
                estimator.eval()
                refiner.train()
            else:
                estimator.train()
            optimizer.zero_grad()

            for rep in range(opt.repeat_epoch):
                for i, data in enumerate(dataloader, 0):
                    points, choose, img, target_sym, target_cen, idx, file_list_idx = data

                    if idx is 9 or idx is 16:
                        continue
                    # points, choose, img, target_sym, target_cen, target, idx, file_list_idx = data
                    # generate_obj_file(target_sym, target_cen, target, idx.squeeze())
                    # import pdb;pdb.set_trace()
                    points, choose, img, target_sym, target_cen, idx = Variable(points).cuda(), \
                    Variable(choose).cuda(), \
                    Variable(img).cuda(), \
                    Variable(target_sym).cuda(), \
                    Variable(target_cen).cuda(), \
                    Variable(idx).cuda()
                    # points, choose, img, target_sym, target_cen, idx = Variable(points), \
                    #                                                 Variable(choose), \
                    #                                                 Variable(img), \
                    #                                                 Variable(target_sym), \
                    #                                                 Variable(target_cen), \
                    #                                                 Variable(idx)
                    pred_norm, pred_on_plane, emb = estimator(
                        img, points, choose, idx)

                    # pred_norm_new = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

                    # for i in range(pred_norm.size(1)):
                    #     pred_norm_new[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
                    # if epoch % 10 == 0:
                    #     generate_obj_file_pred(pred_norm, pred_on_plane, points, count_gen, idx)
                    #     count_gen += 1
                    # print(pred_norm[0,0,:])

                    loss = criterion(pred_norm, pred_on_plane, target_sym,
                                     target_cen, idx, points, opt.w,
                                     opt.refine_start)

                    # scene_idx = dataset.list[file_list_idx]

                    loss.backward()

                    # train_dis_avg += dis.item()
                    train_count += 1

                    if train_count % opt.batch_size == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3}'.
                            format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size),
                                train_count))
                        optimizer.step()
                        # for param_lr in optimizer.module.param_groups:
                        #         param_lr['lr'] /= 2
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count % 5000 == 0:
                        print(pred_on_plane.max())
                        print(pred_on_plane.mean())

                    if train_count != 0 and train_count % 1000 == 0:
                        if opt.refine_start:
                            torch.save(
                                refiner.state_dict(),
                                '{0}/pose_refine_model_current.pth'.format(
                                    opt.outf))
                        else:
                            torch.save(
                                estimator.state_dict(),
                                '{0}/pose_model_current.pth'.format(opt.outf))

            print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.
                  format(epoch))

            logger = setup_logger(
                'epoch%d_test' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
            logger.info('Test time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Testing started'))
            test_loss = 0.0
            test_count = 0
            estimator.eval()
            # refiner.eval()

            # for rep in range(opt.repeat_epoch):
            #     for j, data in enumerate(testdataloader, 0):
            #         points, choose, img, target_sym, target_cen, idx, img_idx = data
            #         # points, choose, img, target, model_points, idx = Variable(points).cuda(), \
            #         #                                                  Variable(choose).cuda(), \
            #         #                                                  Variable(img).cuda(), \
            #         #                                                  Variable(target).cuda(), \
            #         #                                                  Variable(model_points).cuda(), \
            #         #                                                  Variable(idx).cuda()
            #         points, choose, img, target_sym, target_cen, idx = Variable(points), \
            #                                                             Variable(choose), \
            #                                                             Variable(img), \
            #                                                             Variable(target_sym), \
            #                                                             Variable(target_cen), \
            #                                                             Variable(idx)

            #         pred_norm, pred_on_plane, emb = estimator(img, points, choose, idx)
            #         loss = criterion(pred_norm, pred_on_plane, target_sym, target_cen, idx, points, opt.w, opt.refine_start)
            #         test_loss += loss

            #         logger.info('Test time {0} Test Frame No.{1}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count))

            #         test_count += 1

            # test_loss = test_loss / test_count
            logger.info(
                'Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), epoch,
                    test_loss))
            print(pred_on_plane.max())
            print(pred_on_plane.mean())
            bs, num_p, _ = pred_on_plane.size()
            # if epoch % 40 == 0:
            #     import pdb;pdb.set_trace()
            best_test = test_loss
            best_epoch = epoch
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

            if best_test < opt.decay_margin and not opt.decay_start:
                opt.decay_start = True
                opt.lr *= opt.lr_rate
                # opt.w *= opt.w_rate
                optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        estimator.load_state_dict(
            torch.load('{0}/pose_model_{1}_{2}.pth'.format(
                opt.outf, best_epoch, best_test)))
    else:
        estimator.load_state_dict(
            torch.load('{0}/pose_model_11_0.0.pth'.format(opt.outf)))

    product_list = []
    dist_list = []

    true_positives = 0
    false_positives = 0
    false_negatives = 0

    for index in range(len(test_dataset.list)):
        img = Image.open('{0}/data_v1/{1}-color.png'.format(
            test_dataset.root, test_dataset.list[index]))
        depth = np.array(
            Image.open('{0}/data_v1/{1}-depth.png'.format(
                test_dataset.root, test_dataset.list[index])))
        label = np.array(
            Image.open('{0}/data_v1/{1}-label.png'.format(
                test_dataset.root, test_dataset.list[index])))
        meta = scio.loadmat('{0}/data_v1/{1}-meta.mat'.format(
            test_dataset.root, test_dataset.list[index]))

        cam_cx = test_dataset.cam_cx_1
        cam_cy = test_dataset.cam_cy_1
        cam_fx = test_dataset.cam_fx_1
        cam_fy = test_dataset.cam_fy_1
        mask_back = ma.getmaskarray(ma.masked_equal(label, 0))

        obj = meta['cls_indexes'].flatten().astype(np.int32)
        for idx in range(0, len(obj)):
            print('object index: ', obj[idx])
            mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
            mask_label = ma.getmaskarray(ma.masked_equal(label, obj[idx]))
            mask = mask_label * mask_depth
            if not (len(mask.nonzero()[0]) > test_dataset.minimum_num_pt
                    and len(test_dataset.symmetry[obj[idx]]['mirror']) > 0):
                continue

            rmin, rmax, cmin, cmax = get_bbox(mask_label)
            img_temp = np.transpose(np.array(img)[:, :, :3],
                                    (2, 0, 1))[:, rmin:rmax, cmin:cmax]

            img_masked = img_temp
            target_r = meta['poses'][:, :, idx][:, 0:3]
            target_t = np.array(meta['poses'][:, :, idx][:, 3:4].flatten())
            add_t = np.array([
                random.uniform(-test_dataset.noise_trans,
                               test_dataset.noise_trans) for i in range(3)
            ])

            choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
            if len(choose) > test_dataset.num_pt:
                c_mask = np.zeros(len(choose), dtype=int)
                c_mask[:test_dataset.num_pt] = 1
                np.random.shuffle(c_mask)
                choose = choose[c_mask.nonzero()]
            else:
                choose = np.pad(choose, (0, test_dataset.num_pt - len(choose)),
                                'wrap')

            depth_masked = depth[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            xmap_masked = test_dataset.xmap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            ymap_masked = test_dataset.ymap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            choose = np.array([choose])

            cam_scale = meta['factor_depth'][0][0]
            pt2 = depth_masked / cam_scale
            pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx
            pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy
            cloud = np.concatenate((pt0, pt1, pt2), axis=1)

            dellist = [j for j in range(0, len(test_dataset.cld[obj[idx]]))]

            # dellist = random.sample(dellist, len(test_dataset.cld[obj[idx]]) - test_dataset.num_pt_mesh_small)
            # model_points = np.delete(test_dataset.cld[obj[idx]], dellist, axis=0)
            model_points = test_dataset.cld[obj[idx]]

            target_sym = []
            for sym in test_dataset.symmetry[obj[idx]]['mirror']:
                target_sym.append(np.dot(sym, target_r.T))
            target_sym = np.array(target_sym)

            target_cen = np.add(test_dataset.symmetry[obj[idx]]['center'],
                                target_t)

            target = np.dot(model_points, target_r.T)
            target = np.add(target, target_t)

            print('ground truth norm: ', target_sym)
            print('ground truth center: ', target_cen)
            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, target_ten, idx_ten = \
               torch.from_numpy(cloud.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor(choose.astype(np.int32)).unsqueeze(0), \
               test_dataset.norm(torch.from_numpy(img_masked.astype(np.float32))).unsqueeze(0), \
               torch.from_numpy(target_sym.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target_cen.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor([obj[idx]-1]).unsqueeze(0)

            # print(img_ten.size())
            # print(points_ten.size())
            # print(choose_ten.size())
            # print(idx_ten.size())

            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, idx_ten = Variable(points_ten).cuda(), \
                                                                Variable(choose_ten).cuda(), \
                                                                Variable(img_ten).cuda(), \
                                                                Variable(target_sym_ten).cuda(), \
                                                                Variable(target_cen_ten).cuda(), \
                                                                Variable(idx_ten).cuda()

            pred_norm, pred_on_plane, emb = estimator(img_ten, points_ten,
                                                      choose_ten, idx_ten)

            # import pdb;pdb.set_trace()

            bs, num_p, _ = pred_on_plane.size()

            # pred_norm = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

            # for i in range(pred_norm.size(1)):
            #     pred_norm[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
            # pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1))

            generate_obj_file_norm_pred(
                pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1)),
                pred_on_plane, points_ten,
                test_dataset.list[index].split('/')[0],
                test_dataset.list[index].split('/')[1], obj[idx])

            loss = criterion(pred_norm, pred_on_plane, target_sym_ten,
                             target_cen_ten, idx, points_ten, opt.w,
                             opt.refine_start)
            # print('test loss: ', loss)

            # bs, num_p, _ = pred_on_plane.size()
            pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(
                bs, num_p, 1))
            pred_norm = pred_norm.cpu().detach().numpy()
            pred_on_plane = pred_on_plane.cpu().detach().numpy()
            points = points_ten.cpu().detach().numpy()

            clustering_points_idx = np.where(
                pred_on_plane > pred_on_plane.max() * PRED_ON_PLANE_FACTOR +
                pred_on_plane.mean() * (1 - PRED_ON_PLANE_FACTOR))[1]
            clustering_norm = pred_norm[0, clustering_points_idx, :]
            clustering_points = points[0, clustering_points_idx, :]
            num_points = len(clustering_points_idx)

            # import pdb;pdb.set_trace()

            close_thresh = 5e-3
            broad_thresh = 7e-3

            sym_flag = [0 for i in range(target_sym.shape[0])]
            sym_max_product = [0.0 for i in range(target_sym.shape[0])]
            sym_dist = [0.0 for i in range(target_sym.shape[0])]

            count_pred = 0
            while True:
                if num_points == 0:
                    break
                count_pred += 1
                if count_pred > target_sym.shape[0]:
                    break
                best_fit_num = 0

                count_try = 0
                while True:
                    if count_try > 3 or num_points <= 1:
                        break

                    pick_idx = np.random.randint(0, num_points - 1)
                    pick_point = clustering_points[pick_idx]
                    # proposal_norm = np.array(Plane(Point3D(pick_points[0]),Point3D(pick_points[1]),Point3D(pick_points[2])).normal_vector).astype(np.float32)
                    proposal_norm = clustering_norm[pick_idx]
                    proposal_norm = proposal_norm[:, np.newaxis]

                    # import pdb;pdb.set_trace()
                    proposal_point = pick_point
                    # highest_pred_idx = np.argmax(pred_on_plane[0,clustering_points_idx,:])
                    # highest_pred_loc = clustering_points[highest_pred_idx]
                    # proposal_norm = clustering_norm[highest_pred_idx][:,np.newaxis]
                    clustering_diff = clustering_points - proposal_point
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, proposal_norm))

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    broad_inlier_num = len(broad_inliers)

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    close_inlier_num = len(close_inliers)

                    if broad_inlier_num > num_points / (5 - count_pred):
                        best_fit_num = close_inlier_num
                        best_fit_norm = proposal_norm
                        best_fit_cen = clustering_points[close_inliers].mean(0)
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        break
                    else:
                        count_try += 1
                    # else:
                    #     np.delete(clustering_points_idx, highest_pred_idx)
                    #     num_points -= 1

                if count_try > 3 or num_points <= 1:
                    break

                for i in range(2):

                    def f(x):
                        dist = 0
                        x = x / LA.norm(x)
                        for point in clustering_points[broad_inliers]:
                            dist += np.abs(point[0] * x[0] + point[1] * x[1] +
                                           point[2] * np.sqrt(1 - x[0] * x[0] -
                                                              x[1] * x[1]) +
                                           x[2])
                        return dist

                    start_point = np.copy(proposal_norm)
                    start_point[2] = (-proposal_point *
                                      proposal_norm[:, 0]).sum()

                    min_point = fmin(f, start_point)
                    new_pred_loc = np.array([
                        0, 0, -min_point[2] /
                        np.sqrt(1 - min_point[0] * min_point[0] -
                                min_point[1] * min_point[1])
                    ])

                    min_point[2] = np.sqrt(1 - min_point[0] * min_point[0] -
                                           min_point[1] * min_point[1])
                    new_proposal_norm = min_point
                    clustering_diff = clustering_points - new_pred_loc
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, new_proposal_norm))

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    new_close_inlier_num = len(close_inliers)

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    new_broad_inlier_num = len(broad_inliers)
                    # import pdb;pdb.set_trace()
                    if new_close_inlier_num > close_inlier_num:
                        best_fit_num = new_close_inlier_num
                        # proposal_point = clustering_points_idx[clustering_dist.argmin()]
                        proposal_point = new_pred_loc
                        best_fit_norm = new_proposal_norm[:, np.newaxis]
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        best_fit_cen = new_pred_loc
                        inlier_num = new_inlier_num
                        proposal_norm = best_fit_norm

                # other_idx_pick = other_idx[other_idx_pick]

                # if len(other_idx_pick) > num_points//6:
                #     pick_idx = np.concatenate((pick_idx, other_idx_pick), 0)
                #     norm_proposal_new = clustering_norm[pick_idx,:].mean(0)
                #     norm_proposal_new = norm_proposal_new / LA.norm(norm_proposal_new)
                #     inlier_num_new = len(np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh)[0])
                #     if inlier_num_new > inlier_num:
                #         best_fit_num = inlier_num_new
                #         best_fit_idx = np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh_scrap)
                #         best_fit_norm = norm_proposal_new
                #         best_fit_cen = clustering_points[best_fit_idx].mean(0)

                if best_fit_num == 0:
                    break
                else:
                    print('predicted norm:{}, predicted point:{}'.format(
                        best_fit_norm, best_fit_cen))

                    max_idx = np.argmax(np.matmul(target_sym, best_fit_norm))
                    sym_flag[max_idx] += 1
                    sym_product = np.abs((target_sym[max_idx] *
                                          (best_fit_cen - target_cen)).sum())
                    if sym_max_product[max_idx] < sym_product:
                        sym_max_product[max_idx] = sym_product
                        sym_dist[max_idx] = np.matmul(target_sym,
                                                      best_fit_norm)[max_idx]

                    # generate_obj_file_sym_pred(best_fit_norm, best_fit_cen, target_ten, test_dataset.list[index].split('/')[0], test_dataset.list[index].split('/')[1], obj[idx], count_pred)
                    # import pdb;pdb.set_trace()
                    clustering_points_idx = np.setdiff1d(
                        clustering_points_idx, scrub_idx)

                    clustering_norm = pred_norm[0, clustering_points_idx, :]
                    clustering_points = points[0, clustering_points_idx, :]
                    num_points = len(clustering_points_idx)

            for i in range(target_sym.shape[0]):
                if sym_flag[i] >= 1:
                    dist_list.append(sym_dist[i])
                    product_list.append(sym_max_product[i])
                    false_positives += sym_flag[i] - 1
                else:
                    false_negatives += 1

    product_list = np.array(product_list)
    dist_list = np.array(dist_list)
    # import pdb;pdb.set_trace()
    total_num = len(product_list)

    prec = []
    recall = []
    for t in range(1000):
        good_ones = len(
            np.logical_and(dist_list < 0.5 * t / 1000,
                           product_list > math.cos(math.pi * 0.25 * t / 1000)))

        prec.append(good_ones * 1.0 / (false_positives + total_num))
        recall.append(good_ones * 1.0 / (good_ones + false_negatives))

    print(prec)
    print(recall)
    plt.plot(recall, prec, 'r')
    plt.axis([0, 1, 0, 1])
    plt.savefig('prec-recall.png')
Exemplo n.º 19
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        output_results = 'check_linemod.txt'
        opt.repeat_epoch = 20

    elif opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training

    elif opt.dataset == 'ycb-syn':
        opt.num_objects = 31  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/ycb_syn'
        opt.outf = 'trained_models/ycb_syn/ycb_syn2'  # folder to save trained models
        opt.log_dir = 'experiments/logs/ycb_syn/ycb_syn2'  # folder to save logs
        output_results = 'check_ycb_syn.txt'

        opt.w = 0.05
        opt.refine_margin = 0.01

    elif opt.dataset == 'arl':
        opt.num_objects = 10  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl/clutter/arl_finetune_syn_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl/clutter/arl_finetune_syn_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.0045

        # TODO
        opt.repeat_epoch = 20
        opt.start_epoch = 0
        opt.resume_posenet = 'pose_model_1_0.012397416144377301.pth'
        opt.resume_refinenet = 'pose_refine_model_153_0.004032851301599294.pth'

    elif opt.dataset == 'arl1':
        opt.num_objects = 5  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl1/clutter/arl_real_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl1/clutter/arl_real_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # opt.start_epoch = 120
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_115_0.008727498716640046.pth'

    elif opt.dataset == 'elevator':
        opt.num_objects = 1  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/elevator_dataset'
        opt.outf = 'trained_models/elevator/elevator_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/elevator/elevator_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # TODO
        opt.repeat_epoch = 40
        # opt.start_epoch = 47
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_46_0.007581770288279472.pth'

    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = False
        opt.decay_start = False
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'arl':
        dataset = PoseDataset_arl('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'arl1':
        dataset = PoseDataset_arl1('train', opt.num_points, True,
                                   opt.dataset_root, opt.noise_trans,
                                   opt.refine_start)
    elif opt.dataset == 'elevator':
        dataset = PoseDataset_elevator('train', opt.num_points, True,
                                       opt.dataset_root, opt.noise_trans,
                                       opt.refine_start)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)

    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        test_dataset = PoseDataset_ycb_syn('test', opt.num_points, True,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'arl':
        test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'arl1':
        test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                        opt.dataset_root, 0.0,
                                        opt.refine_start)
    elif opt.dataset == 'elevator':
        test_dataset = PoseDataset_elevator('test', opt.num_points, True,
                                            opt.dataset_root, 0.0,
                                            opt.refine_start)

    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    ######################
    ######################

    # TODO (ak): set up tensor board
    # if not os.path.exists(opt.log_dir):
    #     os.makedirs(opt.log_dir)
    #
    # writer = SummaryWriter(opt.log_dir)

    ######################
    ######################

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):

            ##################
            # train
            ##################

            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data

                # TODO: txt file
                # fw = open(test_folder + output_results, 'w')
                # fw.write('Points\n{0}\n\nchoose\n{1}\n\nimg\n{2}\n\ntarget\n{3}\n\nmodel_points\n{4}'.format(points, choose, img, target, model_points))
                # fw.close()

                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {} Epoch {} Batch {} Frame {}/{} Avg_dis: {:.2f} [cm]'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, len(dataset.list),
                            train_dis_avg / opt.batch_size * 100))
                    optimizer.step()
                    optimizer.zero_grad()

                    # TODO: tensorboard
                    # if train_count != 0 and train_count % 250 == 0:
                    #     scalar_info = {'loss': loss.item(),
                    #                    'dis': train_dis_avg / opt.batch_size}
                    #     for key, val in scalar_info.items():
                    #         writer.add_scalar(key, val, train_count)

                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

                    # TODO: tensorboard
                    # scalar_info = {'loss': loss.item(),
                    #                'dis': dis.item()}
                    # for key, val in scalar_info.items():
                    #     writer.add_scalar(key, val, train_count)

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {} Test Frame No.{} dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis * 100))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info(
            'Test time {} Epoch {} TEST FINISH Avg dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis * 100))

        # TODO: tensorboard
        # scalar_info = {'test dis': test_dis}
        # for key, val in scalar_info.items():
        #     writer.add_scalar(key, val, train_count)

        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'arl':
                dataset = PoseDataset_arl('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'arl1':
                dataset = PoseDataset_arl1('train', opt.num_points, True,
                                           opt.dataset_root, opt.noise_trans,
                                           opt.refine_start)
            elif opt.dataset == 'elevator':
                dataset = PoseDataset_elevator('train', opt.num_points, True,
                                               opt.dataset_root,
                                               opt.noise_trans,
                                               opt.refine_start)

            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points,
                                                   False, opt.dataset_root,
                                                   0.0, opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                test_dataset = PoseDataset_ycb_syn('test', opt.num_points,
                                                   True, opt.dataset_root, 0.0,
                                                   opt.refine_start)
            elif opt.dataset == 'arl':
                test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'arl1':
                test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                                opt.dataset_root, 0.0,
                                                opt.refine_start)
            elif opt.dataset == 'elevator':
                test_dataset = PoseDataset_elevator('test', opt.num_points,
                                                    True, opt.dataset_root,
                                                    0.0, opt.refine_start)

            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Exemplo n.º 20
0
def train_net():
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.FileWriter(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    # model & loss
    estimator = DeformNet(opt.n_cat, opt.nv_prior)
    estimator.cuda()
    # pdb.set_trace()
    criterion = Loss(opt.corr_wt, opt.cd_wt, opt.entropy_wt, opt.deform_wt)
    chamferD = ChamferLoss()
    if opt.resume_model != '':
        estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    # 253445 images found. = [249127, 4318]
    # 1101 models loaded.
    train_dataset = PoseDataset(opt.dataset, 'train', opt.data_dir, opt.n_pts,
                                opt.img_size)
    # 2754 images found.
    # 18 models loaded.
    val_dataset = PoseDataset(opt.dataset, 'test', opt.data_dir, opt.n_pts,
                              opt.img_size)
    # start training
    st_time = time.time()
    train_steps = 1500
    global_step = train_steps * (opt.start_epoch - 1)
    n_decays = len(opt.decay_epoch)
    assert len(opt.decay_rate) == n_decays
    for i in range(n_decays):
        if opt.start_epoch > opt.decay_epoch[i]:
            decay_count = i
    # pdb.set_trace()
    train_size = train_steps * opt.batch_size
    indices = []
    page_start = -train_size
    for epoch in range(opt.start_epoch, opt.max_epoch + 1):
        # # train one epoch
        # logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
        #             ', ' + 'Epoch %02d' % epoch + ', ' + 'Training started'))
        # # create optimizer and adjust learning rate if needed
        # if decay_count < len(opt.decay_rate):
        #     if epoch > opt.decay_epoch[decay_count]:
        #         current_lr = opt.lr * opt.decay_rate[decay_count]
        #         optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
        #         decay_count += 1
        # # sample train subset
        # page_start += train_size
        # len_last = len(indices) - page_start
        # if len_last < train_size:
        #     indices = indices[page_start:]
        #     if opt.dataset == 'CAMERA+Real':
        #         # CAMERA : Real = 3 : 1
        #         camera_len = train_dataset.subset_len[0]
        #         real_len = train_dataset.subset_len[1]
        #         real_indices = list(range(camera_len, camera_len+real_len))
        #         camera_indices = list(range(camera_len))
        #         n_repeat = (train_size - len_last) // (4 * real_len) + 1
        #         data_list = random.sample(camera_indices, 3*n_repeat*real_len) + real_indices*n_repeat
        #         random.shuffle(data_list)
        #         indices += data_list
        #     else:
        #         data_list = list(range(train_dataset.length))
        #         for i in range((train_size - len_last) // train_dataset.length + 1):
        #             random.shuffle(data_list)
        #             indices += data_list
        #     page_start = 0
        # train_idx = indices[page_start:(page_start+train_size)]
        # train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_idx)
        # train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, sampler=train_sampler,
        #                                                num_workers=opt.num_workers, pin_memory=True)
        # estimator.train()
        # for i, data in enumerate(train_dataloader, 1):
        #     points, rgb, choose, cat_id, model, prior, sRT, nocs = data
        #     points = points.cuda()
        #     rgb = rgb.cuda()
        #     choose = choose.cuda()
        #     cat_id = cat_id.cuda()
        #     model = model.cuda()
        #     prior = prior.cuda()
        #     sRT = sRT.cuda()
        #     nocs = nocs.cuda()
        #     assign_mat, deltas = estimator(points, rgb, choose, cat_id, prior)
        #     loss, corr_loss, cd_loss, entropy_loss, deform_loss = criterion(assign_mat, deltas, prior, nocs, model)
        #     optimizer.zero_grad()
        #     loss.backward()
        #     optimizer.step()
        #     global_step += 1
        #     # write results to tensorboard
        #     summary = tf.Summary(value=[tf.Summary.Value(tag='learning_rate', simple_value=current_lr),
        #                                 tf.Summary.Value(tag='train_loss', simple_value=loss),
        #                                 tf.Summary.Value(tag='corr_loss', simple_value=corr_loss),
        #                                 tf.Summary.Value(tag='cd_loss', simple_value=cd_loss),
        #                                 tf.Summary.Value(tag='entropy_loss', simple_value=entropy_loss),
        #                                 tf.Summary.Value(tag='deform_loss', simple_value=deform_loss)])
        #     tb_writer.add_summary(summary, global_step)
        #     if i % 10 == 0:
        #         logger.info('Batch {0} Loss:{1:f}, corr_loss:{2:f}, cd_loss:{3:f}, entropy_loss:{4:f}, deform_loss:{5:f}'.format(
        #             i, loss.item(), corr_loss.item(), cd_loss.item(), entropy_loss.item(), deform_loss.item()))
        #
        # logger.info('>>>>>>>>----------Epoch {:02d} train finish---------<<<<<<<<'.format(epoch))

        # evaluate one epoch
        logger.info('Time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Epoch %02d' % epoch + ', ' + 'Testing started'))
        val_loss = 0.0
        total_count = np.zeros((opt.n_cat, ), dtype=int)
        strict_success = np.zeros((opt.n_cat, ),
                                  dtype=int)  # 5 degree and 5 cm
        easy_success = np.zeros((opt.n_cat, ), dtype=int)  # 10 degree and 5 cm
        iou_success = np.zeros((opt.n_cat, ),
                               dtype=int)  # relative scale error < 0.1
        # sample validation subset
        # val_size = 1500
        # val_idx = random.sample(list(range(val_dataset.length)), val_size)
        # val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_idx)
        # val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=1, sampler=val_sampler,
        #                                              num_workers=opt.num_workers, pin_memory=True)
        val_dataloader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=1,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.eval()
        cd_num = torch.zeros(6)
        prior_cd = torch.zeros(6)
        deform_cd = torch.zeros(6)
        # pdb.set_trace()
        for i, data in enumerate(val_dataloader, 1):
            points, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points = points.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points, rgb, choose, cat_id, prior)
            loss, _, _, _, _ = criterion(assign_mat, deltas, prior, nocs,
                                         model)
            # pdb.set_trace()
            prior_loss, _, _ = chamferD(prior, model)
            deform_loss, _, _ = chamferD(prior + deltas, model)

            idx = cat_id.item()
            cd_num[idx] += 1
            prior_cd[idx] += prior_loss.item()
            deform_cd[idx] += deform_loss.item()

            # estimate pose and scale
            inst_shape = prior + deltas
            assign_mat = F.softmax(assign_mat, dim=2)
            nocs_coords = torch.bmm(assign_mat, inst_shape)
            nocs_coords = nocs_coords.detach().cpu().numpy()[0]
            points = points.cpu().numpy()[0]
            # use choose to remove repeated points
            choose = choose.cpu().numpy()[0]
            _, choose = np.unique(choose, return_index=True)
            nocs_coords = nocs_coords[choose, :]
            points = points[choose, :]
            _, _, _, pred_sRT = estimateSimilarityTransform(
                nocs_coords, points)
            # evaluate pose
            cat_id = cat_id.item()
            if pred_sRT is not None:
                sRT = sRT.detach().cpu().numpy()[0]
                R_error, T_error, IoU = compute_sRT_errors(pred_sRT, sRT)
                if R_error < 5 and T_error < 0.05:
                    strict_success[cat_id] += 1
                if R_error < 10 and T_error < 0.05:
                    easy_success[cat_id] += 1
                if IoU < 0.1:
                    iou_success[cat_id] += 1
            total_count[cat_id] += 1
            val_loss += loss.item()
            if i % 100 == 0:
                logger.info('Batch {0} Loss:{1:f}'.format(i, loss.item()))
        # pdb.set_trace()
        deform_cd_metric = (deform_cd / cd_num) * 1000
        print(
            "recon: {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f}"
            .format(deform_cd_metric[0], deform_cd_metric[1],
                    deform_cd_metric[2], deform_cd_metric[3],
                    deform_cd_metric[4], deform_cd_metric[5],
                    torch.mean(deform_cd_metric)))
        prior_cd_metric = (prior_cd / cd_num) * 1000
        print(
            "prior: {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f}"
            .format(prior_cd_metric[0], prior_cd_metric[1], prior_cd_metric[2],
                    prior_cd_metric[3], prior_cd_metric[4], prior_cd_metric[5],
                    torch.mean(prior_cd_metric)))
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)

    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    opt.estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    # estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    # refiner.cuda()

    class_id = 1
    opt.symmetry = {}
    with open('symmetries_ordered.txt', 'r') as f:
        while 1:
            line = f.readline()
            line = line[:-1]
            if not line:
                break
            opt.symmetry[class_id] = {}
            opt.symmetry[class_id]['center'] = list(
                map(lambda x: float(x), line.split(' ')))
            opt.symmetry[class_id]['mirror'] = []
            for i in range(3):
                line = f.readline()
                line = line[:-1]
                x, y, z = list(map(lambda x: float(x), line.split(' ')))

                if not (x == 0 and y == 0 and z == 0):
                    opt.symmetry[class_id]['mirror'].append((x, y, z))
            f.readline()
            f.readline()
            class_id += 1

    opt.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225])

    criterion = Loss(opt.num_points, opt.symmetry)

    opt.estimator.load_state_dict(
        torch.load('{0}/pose_model_64_0.0.pth'.format(opt.outf),
                   map_location='cpu'))
    # import pdb;pdb.set_trace()
    print('start parallelization')

    pool = Pool(4)
    results = [
        pool.apply_async(printCurve, [take_idx, criterion])
        for take_idx in range(3)
    ]

    for take_idx in range(3):
        prec, recall = results[take_idx].get()
        # prec,recall = printCurve(take_idx, criterion)
        for dist_idx in range(5):
            plt.plot(recall[dist_idx],
                     prec[dist_idx],
                     label='dis={:.2f}'.format((dist_idx + 1) * 0.01))

        plt.axis([0, 1, 0, 1])
        plt.xlabel('Recall')
        plt.ylabel('Precision')
        plt.title(title_list[take_idx])
        plt.legend()
        plt.savefig('prec-recall-{}.png'.format(title_list[take_idx]))
        plt.clf()
Exemplo n.º 22
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_plus_bing'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_plus_bing'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training
    estimator = PoseNetPlusDuelBing(num_points=opt.num_points,
                                    num_obj=opt.num_objects)
    estimator.cuda()

    train_writer = SummaryWriter(comment='duel_binham_train')
    valid_writer = SummaryWriter(comment='duel_binham_valid')

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
    elif opt.finetune_posenet != '':
        pretrained_dict = torch.load(opt.finetune_posenet)
        model_dict = estimator.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        model_dict.update(pretrained_dict)
        estimator.load_state_dict(model_dict)
        for k, v in estimator.named_parameters():
            if (k in pretrained_dict):
                v.requires_grad = False
        opt.log_dir += '_cont'
        opt.outf += '_cont'

    opt.refine_start = False
    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.QUATERNION,
        otypes.MODEL_POINTS_TRANSFORMED,
        otypes.MODEL_POINTS,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(
        opt.dataset_root,
        mode='train_syn_grid_valid',
        object_list=object_list,
        output_data=output_format,
        resample_on_error=True,
        preprocessors=[
            YCBOcclusionAugmentor(opt.dataset_root),
            ColorJitter(),
            #InplaneRotator(),
        ],
        postprocessors=[ImageNormalizer(), PointShifter()],
        image_size=[640, 480],
        num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)

    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion_dist = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_lik = DuelLoss(opt.num_points_mesh, opt.sym_list)

    best_dis = np.Inf
    best_lik = -np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    cum_batch_count = 0
    mean_err = 0
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        train_lik_avg = 0.0
        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, quat, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(quat).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                    img, points, choose, idx)
                loss_dist, dis, new_points, new_target = criterion_dist(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                how_max, which_max = torch.max(pred_c.detach(), 1)
                pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
                pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

                max_q = pred_q[which_max.item()]
                max_bq = pred_bq[0, which_max.item()] / torch.norm(
                    pred_bq[0, which_max.item()])
                max_bz = pred_bz[0, which_max.item()]

                loss_lik, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                              -torch.abs(max_bz.view(-1)),
                                              quat)
                loss = loss_dist + loss_lik
                loss.backward()

                train_dis_avg += dis.item()
                train_lik_avg += np.log(lik.item())
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4} Avg_lik:{5}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size,
                            train_lik_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0
                    train_lik_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(),
                               '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_lik = 0.0
        test_count = 0
        estimator.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, quat, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(quat).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                img, points, choose, idx)
            _, dis, new_points, new_target = criterion_dist(
                pred_r, pred_t, pred_c, target, model_points, idx, points,
                opt.w, opt.refine_start)
            how_max, which_max = torch.max(pred_c.detach(), 1)
            pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
            pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

            max_q = pred_q[which_max.item()]
            max_bq = pred_bq[0, which_max.item()] / torch.norm(
                pred_bq[0, which_max.item()])
            max_bz = pred_bz[0, which_max.item()]

            _, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                   -torch.abs(max_bz.view(-1)), quat)

            test_dis += dis.item()
            test_lik += np.log(lik.item())
            logger.info(
                'Test time {0} Test Frame No.{1} dis:{2} lik:{3}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    test_count, dis, lik))

            test_count += 1

        test_dis = test_dis / test_count
        test_lik = test_lik / test_count
        logger.info(
            'Test time {0} Epoch {1} TEST FINISH Avg dis: {2} Avg lik: {3}'.
            format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis, test_lik))
        if test_dis <= best_dis or test_lik >= best_lik:
            best_dis = min(test_dis, best_dis)
            best_lik = max(test_lik, best_lik)

            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_{1}_{2}_{3}.pth'.format(
                    opt.outf, epoch, test_dis, test_lik))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_dis < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
Exemplo n.º 23
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21
    opt.num_points = 1000
    opt.outf = 'trained_models/ycb/' + opt.output_dir
    opt.log_dir = 'experiments/logs/ycb/' + opt.output_dir
    opt.train_dir = 'experiments/tb/ycb/' + opt.output_dir + '/train'
    opt.test_dir = 'experiments/tb/ycb/' + opt.output_dir + '/test'
    opt.repeat_epoch = 1
    if not os.path.exists(opt.outf): os.makedirs(opt.outf, exist_ok=True)
    if not os.path.exists(opt.log_dir): os.makedirs(opt.log_dir, exist_ok=True)
    if not os.path.exists(opt.train_dir):
        os.makedirs(opt.train_dir, exist_ok=True)
    if not os.path.exists(opt.test_dir):
        os.makedirs(opt.test_dir, exist_ok=True)

    opt.repeat_epoch = 1

    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        object_max=opt.object_max)
    estimator.cuda()

    isFirstInitLastDatafolder = True

    if opt.resume_posenet != '':
        psp_estimator = torch.load(
            'trained_models/ycb/pose_model_26_0.012863246640872631.pth')
        pretrained_estimator = torch.load('{0}/{1}'.format(
            opt.outf, opt.resume_posenet))
        estimator_dict = estimator.state_dict()

        psp_dict = {
            k: v
            for k, v in psp_estimator.items() if k.find('cnn.model') == 0
        }
        pretrained_dict = {
            k: v
            for k, v in pretrained_estimator.items()
            if k.find('cnn.model') != 0
        }

        estimator_dict.update(psp_dict)
        estimator_dict.update(pretrained_dict)
        estimator.load_state_dict(estimator_dict)
    else:
        psp_estimator = torch.load(
            'trained_models/ycb/pose_model_26_0.012863246640872631.pth')
        psp_dict = {
            k: v
            for k, v in psp_estimator.items() if k.find('cnn.model') == 0
        }
        estimator_dict = estimator.state_dict()

        estimator_dict.update(psp_dict)
        estimator.load_state_dict(estimator_dict)

    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset_ycb('train', opt.num_points, False, opt.dataset_root,
                              opt.noise_trans, 'ori', False)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             shuffle=False,
                                             num_workers=opt.workers)
    test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                   opt.dataset_root, 0.0, 'ori', False)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)

    dis_vector_last_map = {key: [] for key in range(0, opt.num_objects)}
    for i in range(0, opt.num_objects):
        dis_vector_last_map[i] = None

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        global_train_dis = 0.0

        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                list_full_img, list_focal_length, list_principal_point, list_motion = data

                for list_index in range(len(list_points)):
                    if opt.dataset == 'ycb':
                        points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point \
                            , motion = list_points[list_index], list_choose[list_index], list_img[list_index], \
                                       list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                                       list_filename[list_index], list_full_img[list_index], list_focal_length[
                                           list_index], \
                                       list_principal_point[list_index], list_motion[list_index]
                        datafolder = filename[0].split('/')[1]
                        if isFirstInitLastDatafolder:
                            lastdatafolder = datafolder
                            isFirstInitLastDatafolder = False
                        if datafolder != lastdatafolder:
                            for i in range(0, opt.num_objects):
                                dis_vector_last_map[i] = None

                            optimizer.step()
                            optimizer.zero_grad()
                            train_dis_avg = 0
                            estimator.temporalClear(opt.object_max,
                                                    opt.mem_length)
                        lastdatafolder = datafolder
                    elif opt.dataset == 'linemod':
                        list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename = data
                        points, choose, img, target, model_points, idx, filename = list_points[
                            0]

                    points, choose, img, target, model_points, idx = points.cuda(), \
                                                                     choose.cuda(), \
                                                                     img.cuda(), \
                                                                     target.cuda(), \
                                                                     model_points.cuda(), \
                                                                     idx.cuda()

                    pred_r, pred_t, pred_c, x_return = estimator(
                        img, points, choose, idx, focal_length,
                        principal_point, motion, True)
                    loss, dis, new_points, new_target, dis_vector = criterion(
                        pred_r, pred_t, pred_c,
                        dis_vector_last_map[idx.item()], target, model_points,
                        idx, x_return, opt.w, False,
                        float(opt.loss_stable_alpha))
                    dis_vector_last_map[idx.item()] = dis_vector
                    loss.backward(retain_graph=True)

                    logger.info(
                        'Train time {0} Frame {1} Object {2}, Loss = {3}'.
                        format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            filename, idx.item(), dis))
                    train_dis_avg += dis.item()
                    global_train_dis += dis.item()
                    train_count += 1
                    if train_count % (len(list_points) * opt.batch_size) == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                            .format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size), train_count,
                                train_dis_avg /
                                (len(list_points) * opt.batch_size)))
                        optimizer.step()
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count != 0 and train_count % 1000 == 0:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))
        global_train_dis = 0.0

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()

        for i in range(0, opt.num_objects):
            dis_vector_last_map[i] = None

        with torch.no_grad():
            isFirstInitLastDatafolder = True
            for j, data in enumerate(testdataloader, 0):
                if opt.dataset == 'ycb':
                    list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                    list_full_img, list_focal_length, list_principal_point, list_motion = data
                for list_index in range(len(list_points)):
                    points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point, motion \
                        = list_points[list_index], list_choose[list_index], list_img[list_index], \
                          list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                          list_filename[list_index], list_full_img[list_index], list_focal_length[list_index], \
                          list_principal_point[list_index], list_motion[list_index]
                    datafolder = filename[0].split('/')[1]
                    filehead = filename[0].split('/')[2]
                    if isFirstInitLastDatafolder:
                        lastdatafolder = datafolder
                        isFirstInitLastDatafolder = False
                    if datafolder != lastdatafolder:
                        train_dis_avg = 0
                        estimator.temporalClear(opt.object_max)
                    lastdatafolder = datafolder
                    points, choose, img, target, model_points, idx = points.cuda(), \
                                                                     choose.cuda(), \
                                                                     img.cuda(), \
                                                                     target.cuda(), \
                                                                     model_points.cuda(), \
                                                                     idx.cuda()
                    cloud_path = "experiments/clouds/ycb/{0}/{1}/{2}/{3}_{4}".format(
                        opt.output_dir, epoch, datafolder, filehead,
                        int(idx))  # folder to save logs
                    if not os.path.exists(
                            "experiments/clouds/ycb/{0}/{1}/{2}".format(
                                opt.output_dir, epoch, datafolder)):
                        os.makedirs(
                            "experiments/clouds/ycb/{0}/{1}/{2}".format(
                                opt.output_dir, epoch, datafolder),
                            exist_ok=True)
                    pred_r, pred_t, pred_c, x_return = estimator(
                        img, points, choose, idx, focal_length,
                        principal_point, motion, cloud_path)

                    _, dis, new_points, new_target, dis_vector = criterion(
                        pred_r, pred_t, pred_c,
                        dis_vector_last_map[idx.item()], target, model_points,
                        idx, x_return, opt.w, opt.refine_start,
                        float(opt.loss_stable_alpha))

                    dis_vector_last_map[idx.item()] = dis_vector

                    test_dis += dis.item()
                    logger.info(
                        'Test time {0} Test Frame No.{1} {2} {3} dis:{4}'.
                        format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            test_count, filename, idx.item(), dis))
                    test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%d %Hh %Mm %Ss",
                          time.gmtime(time.time() - st_time)), epoch,
            test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_ori_{1}_{2}.pth'.format(
                    opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
Exemplo n.º 24
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if opt.dataset == 'ycb':
        opt.dataset_root = 'datasets/ycb/YCB_Video_Dataset'
        opt.num_objects = 21
        opt.num_points = 1000
        opt.result_dir = 'results/ycb'
        opt.repeat_epoch = 1
    elif opt.dataset == 'linemod':
        opt.dataset_root = 'datasets/linemod/Linemod_preprocessed'
        opt.num_objects = 13
        opt.num_points = 500
        opt.result_dir = 'results/linemod'
        opt.repeat_epoch = 1
    else:
        print('unknown dataset')
        return
    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans)
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans)
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)
    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()
    opt.diameters = dataset.get_diameter()
    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<')
    print('length of the training set: {0}'.format(len(dataset)))
    print('length of the testing set: {0}'.format(len(test_dataset)))
    print('number of sample points on mesh: {0}'.format(opt.num_points_mesh))
    print('symmetrical object list: {0}'.format(opt.sym_list))

    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.FileWriter(opt.result_dir)
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
    # network
    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        num_rot=opt.num_rot)
    estimator.cuda()
    # loss
    criterion = Loss(opt.sym_list, estimator.rot_anchors)
    knn = KNearestNeighbor(1)
    # learning rate decay
    best_test = np.Inf
    opt.first_decay_start = False
    opt.second_decay_start = False
    # if resume training
    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load(opt.resume_posenet))
        model_name_parsing = (opt.resume_posenet.split('.')[0]).split('_')
        best_test = float(model_name_parsing[-1])
        opt.start_epoch = int(model_name_parsing[-2]) + 1
        if best_test < 0.016 and not opt.first_decay_start:
            opt.first_decay_start = True
            opt.lr *= 0.6
        if best_test < 0.013 and not opt.second_decay_start:
            opt.second_decay_start = True
            opt.lr *= 0.5
    # optimizer
    optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)
    global_step = (len(dataset) //
                   opt.batch_size) * opt.repeat_epoch * (opt.start_epoch - 1)
    # train
    st_time = time.time()
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%02d' % epoch,
            os.path.join(opt.result_dir, 'epoch_%02d_train_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_loss_avg = 0.0
        train_loss_r_avg = 0.0
        train_loss_t_avg = 0.0
        train_loss_reg_avg = 0.0
        estimator.train()
        optimizer.zero_grad()
        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target_t, target_r, model_points, idx, gt_t = data
                obj_diameter = opt.diameters[idx]
                points, choose, img, target_t, target_r, model_points, idx = Variable(points).cuda(), \
                                                                             Variable(choose).cuda(), \
                                                                             Variable(img).cuda(), \
                                                                             Variable(target_t).cuda(), \
                                                                             Variable(target_r).cuda(), \
                                                                             Variable(model_points).cuda(), \
                                                                             Variable(idx).cuda()
                pred_r, pred_t, pred_c = estimator(img, points, choose, idx)
                loss, loss_r, loss_t, loss_reg = criterion(
                    pred_r, pred_t, pred_c, target_r, target_t, model_points,
                    idx, obj_diameter)
                loss.backward()
                train_loss_avg += loss.item()
                train_loss_r_avg += loss_r.item()
                train_loss_t_avg += loss_t.item()
                train_loss_reg_avg += loss_reg.item()
                train_count += 1
                if train_count % opt.batch_size == 0:
                    global_step += 1
                    lr = opt.lr
                    optimizer.step()
                    optimizer.zero_grad()
                    # write results to tensorboard
                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag='learning_rate', simple_value=lr),
                        tf.Summary.Value(tag='loss',
                                         simple_value=train_loss_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_r',
                                         simple_value=train_loss_r_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_t',
                                         simple_value=train_loss_t_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_reg',
                                         simple_value=train_loss_reg_avg /
                                         opt.batch_size)
                    ])
                    tb_writer.add_summary(summary, global_step)
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_loss:{4:f}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_loss_avg / opt.batch_size))
                    train_loss_avg = 0.0
                    train_loss_r_avg = 0.0
                    train_loss_t_avg = 0.0
                    train_loss_reg_avg = 0.0

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%02d_test' % epoch,
            os.path.join(opt.result_dir, 'epoch_%02d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        save_model = False
        estimator.eval()
        success_count = [0 for i in range(opt.num_objects)]
        num_count = [0 for i in range(opt.num_objects)]

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target_t, target_r, model_points, idx, gt_t = data
            obj_diameter = opt.diameters[idx]
            points, choose, img, target_t, target_r, model_points, idx = Variable(points).cuda(), \
                                                                         Variable(choose).cuda(), \
                                                                         Variable(img).cuda(), \
                                                                         Variable(target_t).cuda(), \
                                                                         Variable(target_r).cuda(), \
                                                                         Variable(model_points).cuda(), \
                                                                         Variable(idx).cuda()
            pred_r, pred_t, pred_c = estimator(img, points, choose, idx)
            loss, _, _, _ = criterion(pred_r, pred_t, pred_c, target_r,
                                      target_t, model_points, idx,
                                      obj_diameter)
            test_count += 1
            # evalaution
            how_min, which_min = torch.min(pred_c, 1)
            pred_r = pred_r[0][which_min[0]].view(-1).cpu().data.numpy()
            pred_r = quaternion_matrix(pred_r)[:3, :3]
            pred_t, pred_mask = ransac_voting_layer(points, pred_t)
            pred_t = pred_t.cpu().data.numpy()
            model_points = model_points[0].cpu().detach().numpy()
            pred = np.dot(model_points, pred_r.T) + pred_t
            target = target_r[0].cpu().detach().numpy() + gt_t[0].cpu(
            ).data.numpy()
            if idx[0].item() in opt.sym_list:
                pred = torch.from_numpy(pred.astype(
                    np.float32)).cuda().transpose(1, 0).contiguous()
                target = torch.from_numpy(target.astype(
                    np.float32)).cuda().transpose(1, 0).contiguous()
                inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
                target = torch.index_select(target, 1, inds.view(-1) - 1)
                dis = torch.mean(torch.norm(
                    (pred.transpose(1, 0) - target.transpose(1, 0)), dim=1),
                                 dim=0).item()
            else:
                dis = np.mean(np.linalg.norm(pred - target, axis=1))
            logger.info(
                'Test time {0} Test Frame No.{1} loss:{2:f} confidence:{3:f} distance:{4:f}'
                .format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    test_count, loss, how_min[0].item(), dis))
            if dis < 0.1 * opt.diameters[idx[0].item()]:
                success_count[idx[0].item()] += 1
            num_count[idx[0].item()] += 1
            test_dis += dis
        # compute accuracy
        accuracy = 0.0
        for i in range(opt.num_objects):
            accuracy += float(success_count[i]) / num_count[i]
            logger.info('Object {0} success rate: {1}'.format(
                test_dataset.objlist[i],
                float(success_count[i]) / num_count[i]))
        accuracy = accuracy / opt.num_objects
        test_dis = test_dis / test_count
        # log results
        logger.info(
            'Test time {0} Epoch {1} TEST FINISH Avg dis: {2:f}, Accuracy: {3:f}'
            .format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis, accuracy))
        # tensorboard
        summary = tf.Summary(value=[
            tf.Summary.Value(tag='accuracy', simple_value=accuracy),
            tf.Summary.Value(tag='test_dis', simple_value=test_dis)
        ])
        tb_writer.add_summary(summary, global_step)
        # save model
        if test_dis < best_test:
            best_test = test_dis
        torch.save(
            estimator.state_dict(),
            '{0}/pose_model_{1:02d}_{2:06f}.pth'.format(
                opt.result_dir, epoch, best_test))
        # adjust learning rate if necessary
        if best_test < 0.016 and not opt.first_decay_start:
            opt.first_decay_start = True
            opt.lr *= 0.6
            optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)
        if best_test < 0.013 and not opt.second_decay_start:
            opt.second_decay_start = True
            opt.lr *= 0.5
            optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)

        print(
            '>>>>>>>>----------epoch {0} test finish---------<<<<<<<<'.format(
                epoch))