Exemplo n.º 1
0
    lr = opt.lr * (gamma ** (step))
    print('change learning rate, now learning rate is :', lr)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr



if __name__ == '__main__':

    print_config('config.py')
    print('now runing on device : ', device)

    if not os.path.exists(opt.save_folder):
        os.mkdir(opt.save_folder)

    model = SSD(opt.num_classes, opt.anchor_num)
    if opt.resume:
        print('loading checkpoint...')
        model.load_state_dict(torch.load(opt.resume))
    else:
        vgg_weights = torch.load(opt.save_folder + opt.basenet)
        print('Loading base network...')
        model.vgg.load_state_dict(vgg_weights)

     
    model.to(device)
    model.train()

    mb = MultiBoxEncoder(opt)
        
    image_sets = [['2007', 'trainval'], ['2012', 'trainval']]
Exemplo n.º 2
0
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

voc_root = opt.VOC_ROOT
annopath = os.path.join(voc_root, 'VOC2007', 'Annotations',
                        "%s.xml")  #真实的标签坐标所在的地方
imgpath = os.path.join(voc_root, 'VOC2007', 'JPEGImages', '%s.jpg')  #图片所在的地方
imgsetpath = os.path.join(voc_root, 'VOC2007', 'ImageSets', 'Main',
                          '{:s}.txt')  #测试集的txt文件存在的地方
cachedir = os.path.join(os.getcwd(), 'annotations_cache')  #暂存这些信息的地方

if __name__ == '__main__':

    print('using {} to eval, use cpu may take an hour to complete !!'.format(
        device))
    model = SSD(opt.num_classes, opt.anchor_num)

    print('loading checkpoint from {}'.format(checkpoint))
    state_dict = torch.load(
        checkpoint, map_location=None if torch.cuda.is_available() else 'cpu')
    model.load_state_dict(state_dict)
    model.to(device)
    print('model loaded')

    multibox_encoder = MultiBoxEncoder(opt)

    image_sets = [['2007', 'test']]
    test_dataset = VOCDetection(opt, image_sets=image_sets, is_train=False)

    os.makedirs(output_dir, exist_ok=True)
Exemplo n.º 3
0
    """
    lr = opt.lr * (gamma**(step))
    print('change learning rate, now learning rate is :', lr)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


if __name__ == '__main__':

    print_config('config.py')
    print('now runing on device : ', device)

    if not os.path.exists(opt.save_folder):
        os.mkdir(opt.save_folder)

    model = SSD(opt.num_classes, opt.anchor_num)
    if opt.resume:
        print('loading checkpoint...')
        model.load_state_dict(torch.load(opt.resume))
    else:
        vgg_weights = torch.load(opt.save_folder + opt.basenet)
        print('Loading base network...')
        model.vgg.load_state_dict(vgg_weights)

    model.to(device)
    model.train()

    mb = MultiBoxEncoder(opt)

    image_sets = [['2007', 'trainval'], ['2012', 'trainval']]
    dataset = CustomDetection(