Exemplo n.º 1
0
def run(opt):
    torch.manual_seed(opt.seed)
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test

    print('Setting up data...')
    Dataset = get_dataset(opt.dataset, opt.task,
                          opt.multi_scale)  # if opt.task==mot -> JointDataset

    f = open(opt.data_cfg
             )  # choose which dataset to train '../src/lib/cfg/mot15.json',
    data_config = json.load(f)
    trainset_paths = data_config['train']  # 训练集路径
    dataset_root = data_config['root']  # 数据集所在目录
    print("Dataset root: %s" % dataset_root)
    f.close()

    # Image data transformations
    transforms = T.Compose([T.ToTensor()])

    # Dataset
    dataset = Dataset(opt=opt,
                      root=dataset_root,
                      paths=trainset_paths,
                      img_size=opt.input_wh,
                      augment=True,
                      transforms=transforms)
    opt = opts().update_dataset_info_and_set_heads(opt, dataset)
    print("opt:\n", opt)

    logger = Logger(opt)

    # os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str  # 多GPU训练
    # print("opt.gpus_str: ", opt.gpus_str)

    opt.device = torch.device('cuda:0' if opt.gpus[0] >= 0 else 'cpu')  # 设置GPU

    #opt.device = device #NC UPDATE - fallback to original fairmot
    #opt.gpus = my_visible_devs #NC UPDATE

    print('Creating model...')
    model = create_model(opt.arch, opt.heads, opt.head_conv)

    # 初始化优化器
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)

    start_epoch = 0
    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    # Get dataloader
    if opt.is_debug:
        if opt.multi_scale:
            train_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=opt.batch_size,
                shuffle=False,
                pin_memory=True,
                drop_last=True)  # debug时不设置线程数(即默认为0)
        else:
            train_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=opt.batch_size,
                shuffle=True,
                pin_memory=True,
                drop_last=True)  # debug时不设置线程数(即默认为0)
    else:
        if opt.multi_scale:
            train_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=opt.num_workers,
                pin_memory=True,
                drop_last=True)
        else:
            train_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=opt.batch_size,
                shuffle=True,
                pin_memory=True,
                drop_last=True)  # debug时不设置线程数(即默认为0)

    print('Starting training...')
    Trainer = train_factory[opt.task]
    trainer = Trainer(opt=opt, model=model, optimizer=optimizer)
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)
    # trainer.set_device(opt.gpus, opt.chunk_sizes, device) #NC UPDATE

    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        mark = epoch if opt.save_all else 'last'

        # Train an epoch
        log_dict_train, _ = trainer.train(epoch, train_loader)

        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))

        if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
            save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
                       epoch, model, optimizer)
        else:  # mcmot_last_track or mcmot_last_det
            if opt.id_weight > 0:  # do tracking(detection and re-id)
                save_model(
                    os.path.join(opt.save_dir,
                                 'mcmot_last_track_' + opt.arch + '.pth'),
                    epoch, model, optimizer)
            else:  # only do detection
                # save_model(os.path.join(opt.save_dir, 'mcmot_last_det_' + opt.arch + '.pth'),
                #        epoch, model, optimizer)
                save_model(
                    os.path.join(opt.save_dir,
                                 'mcmot_last_det_' + opt.arch + '.pth'), epoch,
                    model, optimizer)
        logger.write('\n')

        if epoch in opt.lr_step:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)

            lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)

            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        if epoch % 10 == 0:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
    logger.close()
Exemplo n.º 2
0
def main(opt, opt_t):
    torch.manual_seed(opt.seed)
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test
    if opt.target_dataset:
        Dataset_target = get_dataset(opt_t.target_dataset, opt_t.task)
        opt_t = opts().update_dataset_info_and_set_heads(
            opt_t, Dataset_target)  # target dataset
    Dataset_source = get_dataset(opt.source_dataset, opt.task)
    opt = opts().update_dataset_info_and_set_heads(
        opt, Dataset_source)  # source dataset
    print(opt)

    logger = Logger(opt)  # record

    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')

    print('Creating model...')
    model = create_model(opt.arch, opt.heads, opt.head_conv)  # create model
    optimizer = torch.optim.Adam(model.parameters(),
                                 opt.lr)  # create optimizer
    start_epoch = 0
    if opt.load_model != '':  # load model
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    Trainer = train_factory[opt.task]  # set trainer function
    trainer = Trainer(opt, model, optimizer)  # initial trainer
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)

    print('Setting up source_val data...')
    val_source_loader = torch.utils.data.DataLoader(Dataset_source(opt, 'val'),
                                                    batch_size=1,
                                                    shuffle=False,
                                                    num_workers=0,
                                                    pin_memory=True)

    if opt.test:
        _, preds = trainer.val(0, val_source_loader)
        val_source_loader.dataset.run_eval(preds, opt.save_dir)
        return

        # source loader
    print('Setting up source_train data...')
    train_source_loader = torch.utils.data.DataLoader(
        Dataset_source(opt, 'train'),  # modify SOURCE dataset parameters
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.num_workers,
        pin_memory=True,
        drop_last=True)

    if opt.target_dataset:
        # target loader
        print('Setting up target_train data...')
        train_target_loader = torch.utils.data.DataLoader(
            Dataset_target(opt_t, 'train'),  # modify TARGET dataset parameters
            batch_size=opt_t.batch_size,
            shuffle=True,
            num_workers=opt_t.num_workers,
            pin_memory=True,
            drop_last=True)
        print('DA MODE')
    else:
        train_target_loader = None

    print('Starting training...')
    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        mark = epoch if opt.save_all else 'last'
        log_dict_train, _ = trainer.train(epoch, train_source_loader,
                                          train_target_loader)  # do train
        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():  # log information
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))
            # if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
            #   save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),   # save last-model
            #              epoch, model, optimizer)
            #   with torch.no_grad():
            #     log_dict_val, preds = trainer.val(epoch, val_source_loader) # cal val-set loss
            #   for k, v in log_dict_val.items():
            #     logger.scalar_summary('val_{}'.format(k), v, epoch)
            #     logger.write('{} {:8f} | '.format(k, v))
            #   if log_dict_val[opt.metric] < best:
            #     best = log_dict_val[opt.metric]
            #     save_model(os.path.join(opt.save_dir, 'model_best.pth'),    # save best-model
            #                epoch, model)
            # else:
            save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch,
                       model, optimizer)
        logger.write('\n')
        if epoch in opt.lr_step:  # update learning rate
            save_model(
                os.path.join(
                    opt.save_dir,
                    'model_{}.pth'.format(epoch)),  # save lr_step-model
                epoch,
                model,
                optimizer)
            lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
    logger.close()
Exemplo n.º 3
0
def main(opt):
    torch.manual_seed(opt.seed)
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test
    Dataset = get_dataset(opt.dataset, opt.task)
    opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
    print(opt)

    logger = Logger(opt)

    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')

    print('Creating model...')
    model = create_model(opt.arch, opt.heads, opt.head_conv)
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    start_epoch = 0
    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    Trainer = train_factory[opt.task]
    trainer = Trainer(opt, model, optimizer)
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)

    print('Setting up data...')
    val_loader = torch.utils.data.DataLoader(Dataset(opt, 'val'),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=0,
                                             pin_memory=True)

    if opt.test:
        _, preds = trainer.val(0, val_loader)
        val_loader.dataset.run_eval(preds, opt.save_dir)
        return

    train_loader = torch.utils.data.DataLoader(Dataset(opt, 'train'),
                                               batch_size=opt.batch_size,
                                               shuffle=True,
                                               num_workers=opt.num_workers,
                                               pin_memory=True,
                                               drop_last=True)

    print('Starting training...')
    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        mark = epoch if opt.save_all else 'last'
        log_dict_train, _ = trainer.train(epoch, train_loader)
        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))
        if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
            save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
                       epoch, model, optimizer)
            with torch.no_grad():
                log_dict_val, preds = trainer.val(epoch, val_loader)
            for k, v in log_dict_val.items():
                logger.scalar_summary('val_{}'.format(k), v, epoch)
                logger.write('{} {:8f} | '.format(k, v))
            if log_dict_val[opt.metric] < best:
                best = log_dict_val[opt.metric]
                save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch,
                           model)
        else:
            save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch,
                       model, optimizer)
        logger.write('\n')
        if epoch in opt.lr_step:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
            lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
    logger.close()
Exemplo n.º 4
0
def main(opt):
    torch.manual_seed(opt.seed)
    # benchmark=True 自动寻找最适合当前配置的高效算法,来达到优化运行效率的wento
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test

    Dataset = get_dataset(opt.dataset, opt.task)
    opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
    print(opt)

    logger = Logger(opt)

    def adjust_learning_rate(optimizer, epoch):
        # use warmup
        if epoch < 5:
            lr = opt.lr * ((epoch + 1) / 5)
        else:
            # use cosine lr
            PI = 3.14159
            lr = opt.lr * 0.5 * (1 + math.cos(epoch * PI / 20))
            # print(1111)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')

    print('Creating model...')
    model = create_model(opt.arch, opt.heads, opt.head_conv)
    # optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    optimizer = torch.optim.SGD(model.parameters(), opt.lr)
    start_epoch = 0
    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    Trainer = train_factory[opt.task]
    trainer = Trainer(opt, model, optimizer)
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)

    print('Setting up data...')
    # num_worker=0是主进程读取; >0使用多进程读取,子进程读取数据时,训练程序会卡住,GPU utils为0,
    val_loader = torch.utils.data.DataLoader(Dataset(opt, 'val'),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=1,
                                             pin_memory=True)

    if opt.test:
        _, preds = trainer.val(0, val_loader)
        val_loader.dataset.run_eval(preds, opt.save_dir)
        return

    train_loader = torch.utils.data.DataLoader(Dataset(opt, 'train'),
                                               batch_size=opt.batch_size,
                                               shuffle=True,
                                               num_workers=opt.num_workers,
                                               pin_memory=True,
                                               drop_last=True)

    print('Starting training...')
    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        adjust_learning_rate(optimizer, epoch)
        mark = epoch if opt.save_all else 'last'
        log_dict_train, _ = trainer.train(epoch, train_loader)
        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))
        if opt.val_intervals > 0 and epoch % 2 == 0 and epoch > 10:
            save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
                       epoch, model, optimizer)
            with torch.no_grad():
                log_dict_val, preds = trainer.val(epoch, val_loader)
            for k, v in log_dict_val.items():
                logger.scalar_summary('val_{}'.format(k), v, epoch)
                logger.write('{} {:8f} | '.format(k, v))
            if log_dict_val[opt.metric] < best:
                best = log_dict_val[opt.metric]
                save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch,
                           model)

                # test(opt)
                # opt.model = None
        if epoch > 20:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
        # elif 80 < epoch <=100 and epoch % 3 == 0:
        #     save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
        #         epoch, model, optimizer)
        logger.write('\n')
        # if epoch in opt.lr_step:
        #     save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
        #         epoch, model, optimizer)
        #     lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
        #     print('Drop LR to', lr)
        #     for param_group in optimizer.param_groups:
        #         param_group['lr'] = lr
        print('Epoch is Finished')
    logger.close()
def main(opt):
    torch.manual_seed(
        opt.seed
    )  # opt.seed: default=317  ;加上torch.manual_seed这个函数调用的话,打印出来的随机数每次都一样。
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test
    Dataset = get_dataset(
        opt.dataset, opt.task
    )  # opt.dataset = coco, opt.task = ctdet (| ddd | multi_pose | exdet)
    opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
    print(opt)

    logger = Logger(opt)

    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')

    print('Creating model...')
    model = create_model(opt.arch, opt.heads, opt.head_conv)
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    start_epoch = 0
    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    Trainer = train_factory[opt.task]
    trainer = Trainer(opt, model, optimizer)
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)

    print('Setting up data...')
    val_loader = torch.utils.data.DataLoader(Dataset(opt, 'val'),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=1,
                                             pin_memory=True)  # modified by zy
    # val_loader = torch.utils.data.DataLoader(Dataset(opt, 'test'), batch_size=1, shuffle=False, num_workers=1,pin_memory=True)

    if opt.test:
        _, preds = trainer.val(0, val_loader)
        val_loader.dataset.run_eval(preds, opt.save_dir)
        return

    train_loader = torch.utils.data.DataLoader(Dataset(opt, 'train'),
                                               batch_size=opt.batch_size,
                                               shuffle=True,
                                               num_workers=opt.num_workers,
                                               pin_memory=True,
                                               drop_last=True)

    output_choice_log = '/home/zy/zy/2new_network/CenterNet-master/output_choice.log'
    if os.path.exists(output_choice_log):
        os.remove(output_choice_log)

    print('Starting training...')
    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        mark = epoch if opt.save_all else 'last'
        try:
            log_dict_train, _ = trainer.train(
                epoch, train_loader
            )  # !!!!!!!!  train = self.run_epoch('train', epoch, data_loader)
        except Exception as e:  # 如果发生异常,那就返回预设的loss值
            print('Error_train!!!', e)
            print(traceback.format_exc())
            continue
        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))
        if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
            save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
                       epoch, model, optimizer)
            with torch.no_grad():
                try:
                    log_dict_val, preds = trainer.val(epoch, val_loader)
                except Exception as e:  # 如果发生异常,那就返回预设的loss值
                    print('Error_train!!!', e)
                    print(traceback.format_exc())
                    continue
            for k, v in log_dict_val.items():
                logger.scalar_summary('val_{}'.format(k), v, epoch)
                logger.write('{} {:8f} | '.format(k, v))
            if log_dict_val[opt.metric] < best:
                best = log_dict_val[opt.metric]
                save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch,
                           model)
        else:
            save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch,
                       model, optimizer)
        logger.write('\n')
        if epoch in opt.lr_step:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
            lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
    logger.close()
Exemplo n.º 6
0
def main(opt):
    torch.manual_seed(opt.seed)
    torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test

    print('Setting up data...')
    Dataset = get_dataset(opt.task)
    f = open(opt.data_cfg)
    data_config = json.load(f)
    trainset_paths = data_config['train']
    dataset_root = data_config['root']
    f.close()
    transforms = T.Compose([T.ToTensor()])
    dataset = Dataset(opt,
                      dataset_root,
                      trainset_paths, (1088, 608),
                      augment=True,
                      transforms=transforms)
    opt = opts().update_dataset_info_and_set_heads(opt, dataset)
    print(opt)

    logger = Logger(opt)

    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')

    print('Creating model...')

    model = create_model(opt.arch, opt.heads, opt.head_conv)
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    start_epoch = 0
    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   optimizer, opt.resume,
                                                   opt.lr, opt.lr_step)

    # Get dataloader

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=opt.batch_size,
                                               shuffle=True,
                                               num_workers=opt.num_workers,
                                               pin_memory=True,
                                               drop_last=True)

    print('Starting training...')
    Trainer = train_factory[opt.task]
    trainer = Trainer(opt, model, optimizer)
    trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)
    best = 1e10
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        mark = epoch if opt.save_all else 'last'
        log_dict_train, _ = trainer.train(epoch, train_loader)
        logger.write('epoch: {} |'.format(epoch))
        for k, v in log_dict_train.items():
            logger.scalar_summary('train_{}'.format(k), v, epoch)
            logger.write('{} {:8f} | '.format(k, v))

        if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
            save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
                       epoch, model, optimizer)
        else:
            save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch,
                       model, optimizer)
        logger.write('\n')
        if epoch in opt.lr_step:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
            lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        if epoch % 5 == 0:
            save_model(
                os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
                epoch, model, optimizer)
    logger.close()