Exemplo n.º 1
0
def main():
    for cls_name in tqdm(sel_classes):
        print(cls_name)
        # if cls_name != 'driller':
        #     continue
        rd_stat = []
        td_stat = []
        pose_observed = []
        pose_rendered = []

        observed_set_file = os.path.join(
            observed_set_dir, "NDtrain_observed_{}.txt".format(cls_name)
        )
        with open(observed_set_file) as f:
            image_list = [x.strip() for x in f.readlines()]

        for data in image_list:
            pose_observed_path = os.path.join(
                gt_observed_dir, cls_name, data + "-pose.txt"
            )
            src_pose_m = np.loadtxt(pose_observed_path, skiprows=1)

            src_euler = np.squeeze(mat2euler(src_pose_m[:, :3]))
            src_quat = euler2quat(src_euler[0], src_euler[1], src_euler[2]).reshape(
                1, -1
            )
            src_trans = src_pose_m[:, 3]
            pose_observed.append((np.hstack((src_quat, src_trans.reshape(1, 3)))))

            for rendered_idx in range(num_rendered_per_observed):
                tgt_euler = src_euler + np.random.normal(0, angle_std / 180 * pi, 3)
                x_error = np.random.normal(0, x_std, 1)[0]
                y_error = np.random.normal(0, y_std, 1)[0]
                z_error = np.random.normal(0, z_std, 1)[0]
                tgt_trans = src_trans + np.array([x_error, y_error, z_error])
                tgt_pose_m = np.hstack(
                    (
                        euler2mat(tgt_euler[0], tgt_euler[1], tgt_euler[2]),
                        tgt_trans.reshape((3, 1)),
                    )
                )
                r_dist, t_dist = calc_rt_dist_m(tgt_pose_m, src_pose_m)
                transform = np.matmul(K, tgt_trans.reshape(3, 1))
                center_x = transform[0] / transform[2]
                center_y = transform[1] / transform[2]
                count = 0
                while r_dist > angle_max or not (
                    48 < center_x < (640 - 48) and 48 < center_y < (480 - 48)
                ):
                    tgt_euler = src_euler + np.random.normal(0, angle_std / 180 * pi, 3)
                    x_error = np.random.normal(0, x_std, 1)[0]
                    y_error = np.random.normal(0, y_std, 1)[0]
                    z_error = np.random.normal(0, z_std, 1)[0]
                    tgt_trans = src_trans + np.array([x_error, y_error, z_error])
                    tgt_pose_m = np.hstack(
                        (
                            euler2mat(tgt_euler[0], tgt_euler[1], tgt_euler[2]),
                            tgt_trans.reshape((3, 1)),
                        )
                    )
                    r_dist, t_dist = calc_rt_dist_m(tgt_pose_m, src_pose_m)
                    transform = np.matmul(K, tgt_trans.reshape(3, 1))
                    center_x = transform[0] / transform[2]
                    center_y = transform[1] / transform[2]
                    count += 1
                    if count == 100:
                        print(rendered_idx)
                        print(
                            "{}: {}, {}, {}, {}".format(
                                data, r_dist, t_dist, center_x, center_y
                            )
                        )
                        print(
                            "count: {}, image_path: {}, rendered_idx: {}".format(
                                count,
                                pose_observed_path.replace("pose.txt", "color.png"),
                                rendered_idx,
                            )
                        )

                tgt_quat = euler2quat(tgt_euler[0], tgt_euler[1], tgt_euler[2]).reshape(
                    1, -1
                )
                pose_rendered.append(np.hstack((tgt_quat, tgt_trans.reshape(1, 3))))
                rd_stat.append(r_dist)
                td_stat.append(t_dist)
        rd_stat = np.array(rd_stat)
        td_stat = np.array(td_stat)
        print("r dist: {} +/- {}".format(np.mean(rd_stat), np.std(rd_stat)))
        print("t dist: {} +/- {}".format(np.mean(td_stat), np.std(td_stat)))

        output_file_name = os.path.join(
            pose_dir,
            "LM6d_occ_dsm_{}_NDtrain_rendered_pose_{}.txt".format(version, cls_name),
        )
        with open(output_file_name, "w") as text_file:
            for x in pose_rendered:
                text_file.write("{}\n".format(" ".join(map(str, np.squeeze(x)))))
    print("{} finished".format(__file__))
Exemplo n.º 2
0
    pose_observed = []
    pose_rendered = []

    sel_set_file = os.path.join(observed_set_root,
                                "{}_{}.txt".format(cls_name, image_set))
    with open(sel_set_file) as f:
        image_list = [x.strip() for x in f.readlines()]

    for observed_idx in tqdm(image_list):
        # get src_pose_m
        video_name, prefix = observed_idx.split("/")
        pose_path = os.path.join(gt_observed_root, cls_name,
                                 "{}-pose.txt".format(prefix))
        src_pose_m = np.loadtxt(pose_path, skiprows=1)

        src_euler = np.squeeze(mat2euler(src_pose_m[:3, :3]))
        src_quat = euler2quat(src_euler[0], src_euler[1],
                              src_euler[2]).reshape(1, -1)
        src_trans = src_pose_m[:, 3]
        pose_observed.append((np.hstack((src_quat, src_trans.reshape(1, 3)))))

        for rendered_idx in range(num_rendered_per_observed):
            tgt_euler = src_euler + np.random.normal(0, angle_std / 180 * pi,
                                                     3)
            x_error = np.random.normal(0, x_std, 1)[0]
            y_error = np.random.normal(0, y_std, 1)[0]
            z_error = np.random.normal(0, z_std, 1)[0]
            tgt_trans = src_trans + np.array([x_error, y_error, z_error])
            tgt_pose_m = np.hstack(
                (euler2mat(tgt_euler[0], tgt_euler[1],
                           tgt_euler[2]), tgt_trans.reshape((3, 1))))