Exemplo n.º 1
0
def get_figure(ax, file_df, gradient_df, strain_des):
    time = 48.0
    location = "center"
    strain_map, des_strain_map = strainmap.load()
    print(des_strain_map)

    # stp, width = 5, 1
    # wt_sigby        jlb021
    # delru_sigby     jlb088
    # delqp_sigby     jlb039
    # 2xqp_sigby      jlb095
    # delsigb_sigby   jlb098
    # fig.figimage(skimage.io.imread("10x_delqp_48_image_crop.jpg"))
    for c, (strain) in enumerate(strain_des):  # , ,"delsigb_sigby"]

        fids = file_df[(file_df["time"] == time)
                       & (file_df["location"] == location)
                       & (file_df["strain"] == des_strain_map[strain])].index
        print(strain, " has ", len(fids))
        df = gradient_df[gradient_df["file_id"].isin(fids)]
        print(file_df.loc[fids, "name"])

        df = df[df["cdist"] > 2.0]  # ignore top 2um for consistency
        df[["cdist", "ratio",
            "file_id"]].to_csv(f"source_data/figure8_b_{strain}.tsv", sep="\t")
        df_mean = df.groupby("cdist").mean()
        df_sem = df.groupby("cdist").sem()
        # df_mean[df]
        print(len(df))
        color = figure_util.strain_color[des_strain_map[strain].upper()]
        label = figure_util.strain_label[des_strain_map[strain].upper()]
        ax.plot(df_mean.index, df_mean["ratio"], color=color,
                label=label)  # /df["mean_red"])
        ax.fill_between(
            df_mean.index,
            df_mean["ratio"] - df_sem["ratio"],
            df_mean["ratio"] + df_sem["ratio"],
            color=color,
            alpha=0.4,
        )  # /df["mean_red"])
        # ax[c].plot(df_mean.index, df_mean["ratio"], color="purple")#/df["mean_red"])
        # ax[c].fill_between(df_mean.index, df_mean["ratio"]-df_sem["ratio"],df_mean["ratio"]+df_sem["ratio"],color="purple", alpha=0.4 )#/df["mean_red"])
        # ax[c].set_xlim(left=0, right=200)

    # leg = ax.legend(loc="upper right")
    # leg.get_frame().set_alpha(1.0)

    # ax.set_ylim(0, 0.2700)
    ax.set_ylim(0, 0.4500)
    ax.set_xlim(left=0, right=150)
    # ax.set_xlabel("Distance from air interface (μm)")
    ax.set_ylabel("Ratio of P$_{sigB}$-YFP to P$_{sigA}$-RFP")
    # ax.text(-0.05, letter_lab[1], "D", transform=ax.transAxes, fontsize=8)
    return ax
Exemplo n.º 2
0
import matplotlib.pyplot as plt
import matplotlib.gridspec as gs
import pandas as pd
import skimage.io

import sys
print(sys.path)

import lib.strainmap as strainmap

#from figure_util import dpi
import lib.figure_util as figure_util
figure_util.apply_style()

strain_map, des_strain_map = strainmap.load()

letter_lab = (-0.08, 1.0)

fig = plt.figure()
grid = gs.GridSpec(2, 3, height_ratios=[3, 1])
grid.update(left=0.1, right=0.98, bottom=0.1, top=0.99, hspace=0.04)
#grid.update(hspace=0.05)

this_dir = os.path.dirname(os.path.realpath(__file__))

strains = [figure_util.strain_label[s] for s in ["JLB021", "JLB088", "JLB039"]]
biofilm_images = [
    "SigB_48hrs_center_1_1_100615_sect.jpg", "delRU_48hrs_3_6_100615sect.jpg",
    "delQP_48hrs_2_5_100615_sect.jpg"
]
Exemplo n.º 3
0
def main():

    basedir = os.path.join(this_dir, "../../datasets/LSM700_63x_sigb")

    if not USE_CACHE_PLOTS:
        cell_df = pd.read_hdf(os.path.join(basedir, "single_cell_data.h5"),
                              "cells")
        file_df = filedb.get_filedb(os.path.join(basedir, "file_list.tsv"))
    else:
        file_df = None
        cell_df = None

    time = 48
    location = "center"
    slice_srt, slice_end = 5, 7  #10, 15
    #slice_srt, slice_end = 5, 6 #10, 15 #
    # There is no major difference between 5-6 and 7-8, just the QP skew is bigger in 5-6
    #slice_srt, slice_end = 7, 8 #10, 15
    # Moving to 2um because it makes the plots look nicer.

    # fig, ax = plt.subplots(4, 2)
    # axhisto = ax[:, 1]
    # aximage = ax[:, 0]
    fig, ax = plt.subplots(2, 4)
    axhisto = ax[1, :]
    aximage = ax[0, :]

    for i, (name, path, roi, chans) in enumerate(image_list):
        impath = os.path.join(image_base_dir, path)
        aximage[i] = subfig_draw_bin.get_figure(aximage[i],
                                                name,
                                                impath,
                                                roi,
                                                chans,
                                                FP_max_min,
                                                (slice_srt, slice_end),
                                                add_scale_bar=i == 0)
        aximage[i].set_title("")
        aximage[i].text(imgletter_lab[0],
                        imgletter_lab[1],
                        topletters[i],
                        transform=aximage[i].transAxes,
                        **letter_settings,
                        color="white")

    text_x = 0.40
    text_top = 0.85
    line_sep = 0.15
    title_loc, cv_loc, samp_loc, cell_loc = [
        (text_x, text_top - (line_sep * i)) for i in range(4)
    ]

    strain_map, des_strain_map = strainmap.load()
    gchan = "green_raw_bg_meannorm"
    rchan = "red_raw_bg_meannorm"
    if not USE_CACHE_PLOTS:
        cell_df = cell_df[cell_df[rchan] > 0].copy()

    #max_val = 30000
    #max_val = 1.0 #6.0 #20000
    #gmax_val = 1.0 #7.5
    max_val = 6.5  #2.5
    gmax_val = 6.5  #0.75
    nbins = 150
    rbins = (0, max_val, nbins)
    gbins = (0, gmax_val, nbins)
    percentile = 0  #99
    list_of_histos = [("wt_sigar_sigby", rchan, "WT P$_{sigA}$-RFP",
                       figure_util.strain_color["JLB021"]),
                      ("wt_sigar_sigby", gchan, "WT P$_{sigB}$-YFP",
                       figure_util.strain_color["JLB021"]),
                      ("delqp_sigar_sigby", gchan, "ΔrsbQP P$_{sigB}$-YFP",
                       figure_util.strain_color["JLB039"]),
                      ("delru_sigar_sigby", gchan, "ΔrsbRU P$_{sigB}$-YFP",
                       figure_util.strain_color["JLB088"])]
    print("-----------")
    for i, (strain, chan, label, color) in enumerate(list_of_histos):
        print(label)
        strain_df = None
        if not USE_CACHE_PLOTS:
            fids = file_df[(file_df["time"] == time)
                           & (file_df["location"] == location) &
                           (file_df["strain"] == des_strain_map[strain])].index
            strain_df = cell_df[cell_df["global_file_id"].isin(fids)]

        dset = time, location, strain
        plot_args = {"color": color, "max_min": "std", "mode_mean": False}
        tbins = gbins
        if "red" in chan:
            tbins = rbins

        args = (axhisto[i], strain_df, chan, tbins, (slice_srt, slice_end),
                dset, percentile, USE_CACHE_PLOTS, this_dir, plot_args)
        axhisto[i], _, meandmed = subfig_indivfile_histo.get_figure(*args)
        axhisto[i].text(1.0,
                        hisletter_lab[1],
                        label,
                        horizontalalignment='right',
                        verticalalignment='top',
                        color="black",
                        fontsize=plt.rcParams["axes.titlesize"],
                        transform=axhisto[i].transAxes)

        axhisto[i].text(hisletter_lab[0],
                        hisletter_lab[1],
                        letters[i],
                        transform=axhisto[i].transAxes,
                        **letter_settings)

    #leg = axhisto[0].legend(loc="center right")

    #axhisto[-1].set_xlabel("Mean normalised cell fluorecence")
    axhisto[0].set_ylabel("Percentage of cells")

    axhisto[0].set_xlim(0, max_val)
    for a in np.ravel(axhisto):
        #a.set_ylabel("Percentage of cells")
        a.set_xlabel("Mean normalised cell fluorecence")
        a.set_ylim(0, 5)
        a.set_xlim(0, gmax_val)
        a.tick_params(axis='x', which='both',
                      direction='out')  #, length=2, pad=0)
        a.tick_params(axis='y', which='both',
                      direction='out')  #, length=2, pad=0)

    # for a in axhisto[:-1]:
    #     a.set_xticklabels([])
    for a in axhisto[1:]:
        a.set_yticklabels([])

    filename = "demo_longtail"
    #fig.subplots_adjust(left=000, ri0ht=0.98, top = 1.0, bottom=0.06, hspace=0.08, wspace=0.2)
    #width, height = figure_util.get_figsize(figure_util.fig_width_small_pt, wf=1.0, hf=1.7)
    fig.subplots_adjust(left=0.05,
                        right=0.99,
                        top=1.0,
                        bottom=0.10,
                        hspace=0.08,
                        wspace=0.15)
    width, height = figure_util.get_figsize(figure_util.fig_width_big_pt,
                                            wf=1.0,
                                            hf=0.5)
    fig.set_size_inches(width, height)
    figure_util.save_figures(fig, filename, ["png", "pdf"], this_dir)
def main():

    curve_score_methods = {
        "std": ("Standard Deviation", 2.5, lambda d, h, b: np.std(d)),
        "mean": ("Mean", 4.0, lambda d, h, b: np.mean(d)),
        "cv": ("Coefficient of variation", 1.2,
               lambda d, h, b: scipy.stats.variation(d)),
        "skew": ("modern skew", 3.5, lambda d, h, b: scipy.stats.skew(d)),
        "skew_normed":
        ("Skew", 4.0, lambda d, h, b: scipy.stats.skew(d, bias=False)),
        "mode": ("Mode", 3.5, lambda d, h, b: b[h.argmax()]),
        "num": ("# cells", 2000, lambda d, h, b: len(d)),
        "pearson_mode_mean":
        ("pearson Mode mean", 1.2, pearson_mode_mean_skew),
        "non_parameteric_skew": ("Non parameteric", 0.4, non_parametric_skew),
        "kurtosis": ("Kurtosis", 8.0, lambda d, h, b: scipy.stats.kurtosis(d))
    }

    plot_colors = [  #"mean",
        "std",
        #"cv",
        #"skew",
        #"num",
        "skew_normed",
        #"pearson_mode_mean",
        #"non_parameteric_skew",
        #"kurtosis",
    ]

    basedir = "../../datasets/biofilm_cryoslice/LSM700_63x_sigb"
    #cell_df = pd.read_hdf(os.path.join(basedir, "new_edge_bgsubv2_maxnorm_lh1segment.h5"), "cells")
    #cell_df = pd.read_hdf(os.path.join(basedir, "new_edge_bgsubv2_maxnorm_lh1segment.h5"), "cells")
    #cell_df = pd.read_hdf(os.path.join(basedir, "mini_bgsubv2_maxnorm_comp5.h5"), "cells")
    cell_df = pd.read_hdf(os.path.join(basedir, "bgsubv2_maxnorm_comp5.h5"),
                          "cells")
    cell_df = cell_df[cell_df["red_bg_maxnorm"] > 0]
    cell_df = cell_df[cell_df["distance"] > 2]
    time = 48  #.0
    location = "center"
    file_df = filedb.get_filedb(os.path.join(basedir, "file_list.tsv"))
    strain_map, des_strain_map = strainmap.load()

    percentile = 0  #99#
    gmax = None
    rmax = None
    gmax = 0.7
    rmax = 3.0
    strains = [("wt_sigar_sigby", "red_bg_maxnorm", rmax),
               ("wt_sigar_sigby", "green_bg_maxnorm", gmax),
               ("delqp_sigar_sigby", "green_bg_maxnorm", gmax),
               ("delru_sigar_sigby", "green_bg_maxnorm", gmax),
               ("2xqp_sigar_sigby", "green_bg_maxnorm", gmax)]

    fig, ax = plt.subplots(len(plot_colors),
                           len(strains),
                           sharex=True,
                           sharey=True)
    for c, (strain, chan, maxv) in enumerate(strains):
        strain_num = des_strain_map[strain]
        distances, sbins, histograms, stats = get_strain_result(
            file_df, cell_df, time, location, strain_num, chan, maxv,
            percentile, curve_score_methods)
        for r, k in enumerate(plot_colors):
            color = figure_util.strain_color[strain_num.upper()]
            ax[r, c], mx, mv = plot_curves(ax[r, c], color, distances, sbins,
                                           histograms, stats, k)

            if c == len(strains) - 1:
                posn = ax[r, c].get_position()
                cbax = fig.add_axes(
                    [posn.x0 + posn.width + 0.01, posn.y0, 0.02, posn.height])
                max_val = curve_score_methods[k][1]
                label = curve_score_methods[k][0]
                sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma,
                                           norm=plt.Normalize(vmin=0,
                                                              vmax=max_val))
                sm._A = []
                plt.colorbar(sm, cax=cbax)  #, fig=fig)
                cbax.set_ylabel(label, rotation=-90, labelpad=8)

    #max_val = m
    #metric_name = n
    # ax[0].set_title("WT P$_{sigA}$-RFP")
    # ax[1].set_title("WT P$_{sigB}$-YFP")
    # ax[2].set_title("ΔrsbQP P$_{sigB}$-YFP")
    # ax[3].set_title("ΔrsbRU P$_{sigB}$-YFP")

    # for a in ax[1:]:
    #     a.set_ylabel("")
    # ax[0].set_ylabel("Distance from air interface (μm)")

    plt.show()
#dataset_dir = "datasets/LSM780_10x_sigb/"
dataset_dir = "/media/nmurphy/BF_Data_Orange/datasets/lsm700_live20x_newstrain1"
#gradient_df = pd.read_hdf(dataset_dir + "gradient_data.h5", "data")
gradient_df = pd.read_hdf(
    os.path.join(dataset_dir, "gradient_data_distmap.h5"), "data")
#gradient_df["ratio"] = gradient_df["green_bg_mean"]/gradient_df["red_bg_mean"]
gradient_df[
    "ratio"] = gradient_df["green_raw_mean"] / gradient_df["red_raw_mean"]
output_dir = os.path.join(dataset_dir, "gradient_summary")

file_df = filedb.get_filedb(os.path.join(dataset_dir, "file_list.tsv"))

time = 48.0
#strain_map, des_strain_map = strainmap.load()
strain_to_type, type_to_strain = strainmap.load()
cell_types = np.unique([t[0] for t in strain_to_type.values()])
strain_to_type = {s: t[0] for s, t in strain_to_type.items()}
type_to_strain = dict(zip(cell_types, [[]] * len(cell_types)))
for strain, typel in strain_to_type.items():
    type_to_strain[typel] = type_to_strain[typel] + [strain]


def get_strain(name):
    fdf = file_df[(file_df["time"] == time)
                  & (file_df["strain"].isin(type_to_strain[name]))]
    fids = fdf.index
    #print(fdf.columns)
    e = len((fdf["strain"] + fdf["dirname"]).unique())
    print(name, " has ", len(fids), "images from ", e, "experiments")
    print(fdf[["dirname", "name"]])
Exemplo n.º 6
0
def main():
    curve_score_methods = {
        "std":
        ("Standard deviation", (0.0, 1.0), lambda d, h, b: np.std(d)),  # 1.5,
        "mean": ("Mean", (0.0, 4.0), lambda d, h, b: np.mean(d)),
        "cv": (
            "Coefficient of variation",
            (0.3, 0.8),
            lambda d, h, b: scipy.stats.variation(d),
        ),
        # "skew": ("modern skew",
        #        0.0, 3.0,
        #        lambda d, h, b: scipy.stats.skew(d)),
        "skew_normed": (
            "Skew",
            (0.0, 2.9),
            lambda d, h, b: scipy.stats.skew(d, bias=False),
        ),
        # "mode": ("Mode",
        #        0.0, 3.5,
        #        lambda d, h, b: b[h.argmax()]),
        # "num": ("# cells",
        #        0.0, 2000,
        #        lambda d, h, b: len(d)),
        # "pearson_mode_mean": ("pearson Mode mean",
        #         0.0, 1.2,
        #         joy_plots_of_gradients.pearson_mode_mean_skew),
        # "non_parameteric_skew": ("Non parameteric",
        #         0.0, 0.4,
        #         joy_plots_of_gradients.non_parametric_skew),
        "kurtosis":
        ("Kurtosis", (0.0, 8.0), lambda d, h, b: scipy.stats.kurtosis(d)),
    }

    plot_colors = [  # "mean",
        # "std",
        "cv",
        # "skew",
        # "num",
        # "skew_normed",
        "skew_normed",  # same as pandas
        # "pearson_mode_mean",
        # "non_parameteric_skew",
        # "kurtosis",
    ]

    # basedir = "../../data/bio_film_data/63xdatasets"
    #this_dir = os.path.dirname(__file__)
    this_dir = "/media/nmurphy/BF_Data_Orange/"
    #basedir = os.path.join(this_dir, "../../datasets/LSM700_63x_sigb")
    basedir = os.path.join(this_dir, "datasets/LSM700_63x_sigb")
    # cell_df = pd.read_hdf(os.path.join(basedir, "edge_redo_lh1segment_data_bg_back_bleed.h5"), "cells")
    # cell_df = pd.read_hdf(os.path.join(basedir, "new_edge_bgsubv2_maxnorm_lh1segment.h5"), "cells")
    cell_df = pd.read_hdf(os.path.join(basedir, "single_cell_data.h5"),
                          "cells")
    # cell_df = pd.read_hdf(os.path.join(basedir, "edge_redo_lh1segment_data.h5"), "cells")
    # cell_df = pd.read_hdf(os.path.join(basedir, "lh1segment_bgsub_data.h5"), "cells")
    # cell_df = cell_df[cell_df["area"] > 140]
    cell_df = cell_df[cell_df["distance"] > 2]
    time = 48  # .0
    location = "center"
    file_df = filedb.get_filedb(os.path.join(basedir, "file_list.tsv"))
    strain_map, des_strain_map = strainmap.load()

    # cbar_mins = {0: 0.5, 1:0.0}

    percentile = 0  # 99#
    # green_chan = "meannorm_green"
    # red_chan = "meannorm_red"
    rmax = 6.5
    gmax = 6.5  # 0.4
    green_chan = "green_raw_bg_mean"
    red_chan = "red_raw_bg_mean"
    rmax = 50000
    gmax = 10000
    strains = [
        ("wt_sigar_sigby", red_chan, rmax, "WT\n P$_{sigA}$-RFP"),
        ("wt_sigar_sigby", green_chan, gmax, "WT\n P$_{\mathit{sigB}}$-YFP"),
        (
            "delru_sigar_sigby",
            green_chan,
            gmax,
            "Δ$\mathit{rsbRU}$\n P$_{\mathit{sigB}}$-YFP",
        ),
        (
            "delqp_sigar_sigby",
            green_chan,
            gmax,
            "Δ$\mathit{rsbQP}$\n P$_{\mathit{sigB}}$-YFP",
        ),
    ]
    # ("2xqp_sigar_sigby", green_chan,  gmax,  "2$\\times$rsbQP\n P$_{sigB}$-YFP")]

    fig, ax = plt.subplots(len(plot_colors), len(strains), sharey=True)
    for c, (strain, chan, max_val, name) in enumerate(strains):
        strain_num = des_strain_map[strain]
        distances, sbins, histograms, stats = joy_plots_of_gradients.get_strain_result(
            file_df,
            cell_df,
            time,
            location,
            strain_num,
            chan,
            max_val,
            percentile,
            curve_score_methods,
        )
        for r, k in enumerate(plot_colors):
            color = figure_util.strain_color[strain_num.upper()]
            ax[r, c], mv, leglist = joy_plots_of_gradients.plot_curves(
                ax[r, c], color, distances, sbins, histograms, stats, k)

            if c == len(strains) - 1:
                posn = ax[r, c].get_position()
                cbax = fig.add_axes([
                    posn.x0 + posn.width + 0.0005, posn.y0, 0.015, posn.height
                ])
                label = curve_score_methods[k][0]
                min_zval = curve_score_methods[k][1][0]
                max_zval = curve_score_methods[k][1][1]
                sm = plt.cm.ScalarMappable(
                    cmap=plt.get_cmap("viridis"),
                    norm=plt.Normalize(vmin=min_zval, vmax=max_zval),
                )
                sm._A = []
                _ = plt.colorbar(sm, cax=cbax)  # , fig=fig)
                cbax.set_ylabel(label, rotation=-90, labelpad=8)
                cbax.tick_params(direction="out")

            if r == 0:
                ax[r, c].set_title(name, fontsize=6)
                ax[r, c].get_xaxis().set_ticklabels([])

            ax[r, c].set_xlim(0, max_val)

    # this didnt return the right mode for some reason
    # leg = ax[0, -1].legend(leglist)

    leg = ax[0, -1].legend(leglist, ["Mode", "Mean"],
                           loc="lower left",
                           bbox_to_anchor=(0.84, 0.97))
    leg.set_zorder(400)
    for a in ax.flatten():
        a.tick_params(direction="out")
    ax[0, 0].annotate(
        "Distance from top of biofilm (μm)",
        xy=(0, 0),
        xytext=(0.02, 0.5),
        textcoords="figure fraction",
        # arrowprops=dict(facecolor='black', shrink=0.05),
        horizontalalignment="center",
        verticalalignment="center",
        fontsize="medium",
        color=mpl.rcParams["axes.labelcolor"],
        rotation=90,
    )
    ax[1, 2].annotate(
        "Normalized fluoresence",
        xy=(0, 0),
        xytext=(0.5, 0.04),
        textcoords="figure fraction",
        # arrowprops=dict(facecolor='black', shrink=0.05),
        horizontalalignment="center",
        verticalalignment="center",
        fontsize="medium",
        color=mpl.rcParams["axes.labelcolor"],
    )
    # for a in ax[:, 0].flatten():
    #     ticklabs = a.yaxis.get_ticklabels()
    #     ticklabs = a.get_yticks()#.tolist()
    #     ticklabs[-1] = ''

    letters = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]
    # letter_lab = (-0.13, 0.98)
    for a, l in zip(ax.flatten(), letters):
        a.annotate(
            l,
            xy=(0, 0),
            xytext=(-0.13, 0.95),
            textcoords="axes fraction",
            # arrowprops=dict(facecolor='black', shrink=0.05),
            horizontalalignment="center",
            verticalalignment="center",
            fontsize=figure_util.letter_font_size,
            color="black",
        )
    #    a.text(letter_lab[0], letter_lab[1], l, transform=a.transAxes, fontsize=8)

    filename = "sup_meta_histo"
    width, height = figure_util.get_figsize(figure_util.fig_width_medium_pt,
                                            wf=1.0,
                                            hf=0.6)
    fig.subplots_adjust(left=0.085,
                        right=0.89,
                        top=0.89,
                        bottom=0.13,
                        hspace=0.20,
                        wspace=0.25)
    fig.set_size_inches(width, height)  # common.cm2inch(width, height))
    figure_util.save_figures(fig, filename, ["png", "pdf"], this_dir)
Exemplo n.º 7
0
def main():

    basedir = os.path.join(this_dir, "../../datasets/LSM700_63x_sigb")

    time = 48
    location = "center"
    # slice_srt, slice_end = 5, 7 #10, 15
    slice_srt_end = (5, 7)

    fig, ax = plt.subplots(2, 2)
    axhisto = ax[1, 1]
    aximage = [ax[0, 0], ax[0, 1], ax[1, 0]]

    for i, (name, path, roi, chans) in enumerate(image_list):
        impath = os.path.join(image_base_dir, path)
        aximage[i] = subfig_draw_bin.get_figure(
            aximage[i],
            name,
            impath,
            roi,
            chans,
            FP_max_min,
            slice_srt_end,
            add_scale_bar=i == 0,
        )
        aximage[i].set_title("")
        aximage[i].text(imgletter_lab[0],
                        imgletter_lab[1],
                        topletters[i],
                        transform=aximage[i].transAxes,
                        **letter_settings)  # , color="white")
        aximage[i].text(0.05,
                        0.05,
                        name,
                        transform=aximage[i].transAxes,
                        **label_settings,
                        color="white")

    #####################
    ## Histograms
    generate_data_subset = False

    strain_map, des_strain_map = strainmap.load()

    file_df = filedb.get_filedb(os.path.join(basedir, "file_list.tsv"))
    cachedpath = os.path.join(basedir, "histo_tops_normed.h5")

    gchan = "green_raw_bg_mean"
    rchan = "red_raw_bg_mean"
    nbins = 150
    gmax = 1
    gbins = np.linspace(0, gmax, nbins)

    list_of_histos = [
        # ("2xqp_sigar_sigby",  gchan, rchan, gbins, slice_srt_end, "2xQP", strain_color["JLB095"]),
        (
            "wt_sigar_sigby",
            gchan,
            rchan,
            gbins,
            slice_srt_end,
            r"WT P$_{\mathit{sigB}}$-YFP",
            strain_color["JLB021"],
        ),
        (
            "delru_sigar_sigby",
            gchan,
            rchan,
            gbins,
            slice_srt_end,
            r"Δ$\mathit{rsbRU}$ P$_{\mathit{sigB}}$-YFP",
            strain_color["JLB088"],
        ),
        (
            "delqp_sigar_sigby",
            gchan,
            rchan,
            gbins,
            slice_srt_end,
            r"Δ$\mathit{rsbQP}$ P$_{\mathit{sigB}}$-YFP",
            strain_color["JLB039"],
        ),
    ]
    axes = [axhisto] * len(list_of_histos)
    if generate_data_subset:
        df = pd.read_hdf(os.path.join(basedir, "single_cell_data.h5"), "cells")
        cellsdf = subfig_normalised_histos.get_data_subset(
            df, file_df, list_of_histos, time, location, cachedpath)
    else:
        cellsdf = pd.read_hdf(cachedpath, "cells")

    axes = subfig_normalised_histos.get_figure(cellsdf, file_df, axes, time,
                                               location, list_of_histos)
    axes[0].legend()

    axhisto.text(hisletter_lab[0],
                 hisletter_lab[1],
                 letters[0],
                 transform=axhisto.transAxes,
                 **letter_settings)

    axhisto.set_ylabel("Percentage of cells")

    axhisto.set_xlim(0, gmax)
    axhisto.set_ylim(0, 8.5)
    axhisto.tick_params(axis="x", which="both",
                        direction="out")  # , length=2, pad=0)
    axhisto.tick_params(axis="y", which="both",
                        direction="out")  # , length=2, pad=0)
    axhisto.yaxis.set_major_locator(mticker.MaxNLocator(nbins=3, integer=True))
    axhisto.set_xlabel("Normalised cell fluorecence")

    filename = "demo_longtail"
    fig.subplots_adjust(left=0.05,
                        right=0.95,
                        top=0.99,
                        bottom=0.1,
                        hspace=0.08,
                        wspace=0.20)
    width, height = figure_util.get_figsize(figure_util.fig_width_small_pt,
                                            wf=1.0,
                                            hf=0.9)
    fig.set_size_inches(width, height)
    figure_util.save_figures(fig, filename, ["png", "pdf"], this_dir)
Exemplo n.º 8
0
def main():
    this_dir = os.path.dirname(__file__)
    basedir = os.path.join(this_dir, "../../datasets/LSM700_63x_sigb")
    #cell_df = pd.read_hdf(os.path.join(basedir, "edge_redo_lh1segment_data_bg_back_bleed.h5"), "cells")
    cell_df = pd.read_hdf(os.path.join(basedir, "single_cell_data.h5"), "cells")
    print(cell_df.columns)

    file_df = filedb.get_filedb(os.path.join(basedir, "file_list.tsv"))
    file_df.loc[file_df["time"] == 26.0, ['time']] = 24.0
    file_df.loc[file_df["time"] == 38.0, ['time']] = 36.0
    
    USE_CACHE_PLOTS = False


    time = 48
    location = "center"
    slice_srt, slice_end = 5, 7 

    fig, axhisto = plt.subplots(1, 1)

    strain_map, des_strain_map = strainmap.load()
    gchan = "green_raw_bg_autofluor_bleedthrough_meannorm"

    gmax_val = 20
    nbins=150

    gbins = (0, gmax_val, nbins)

    percentile = 0
    list_of_histos = [ 
            ("wt_sigar_sigby", gchan, "WT P$_{sigB}$-YFP", strain_color["JLB021"]),
            ("delqp_sigar_sigby", gchan, "ΔrsbQP P$_{sigB}$-YFP", strain_color["JLB039"]),
            ("delru_sigar_sigby", gchan, "ΔrsbRU P$_{sigB}$-YFP", strain_color["JLB088"]),
            ("2xqp_sigar_sigby", gchan, "2$\\times$rsbQP P$_{sigB}$-YFP", strain_color["JLB095"]),
    ]
    print("-----------")
    lelines = []
    lelabs = []
    for i, (strain, chan, label, color) in enumerate(list_of_histos):
        print(label)
        fids = file_df[(file_df["time"] == time) &
                    (file_df["location"] == location) &
                    (file_df["strain"] == des_strain_map[strain])].index
        strain_df = cell_df[cell_df["global_file_id"].isin(fids)]
        #strain_df = get_strain(file_df, cell_df, strain) 
        plot_args = {"color":color, "max_min":"none", "mode_mean":False}
        tbins = gbins
        dset = time, location, strain

        args = (axhisto, strain_df, chan, tbins, (slice_srt, slice_end), dset, percentile, USE_CACHE_PLOTS, this_dir, plot_args)
        axhisto, line, _ = subfig_indivfile_histo.get_figure(*args)
        lelines += [line]
        lelabs += [label]
    axhisto.legend(lelines, lelabs)
        
    axhisto.set_xlabel("Normalised cell fluorecence (bleed through subtracted)")

    axhisto.set_ylabel("Percentage of cells") 
    axhisto.set_ylim(0, 7)
    axhisto.set_xlim(0, gmax_val)
        

    filename = "sup_bleed_histo"
    fig.subplots_adjust(left=0.1, right=0.9, top = 0.98, bottom=0.2)#, hspace=0.35, wspace=0.2)
    width, height = figure_util.get_figsize(figure_util.fig_width_small_pt, wf=1.0, hf=0.5)
    fig.set_size_inches(width, height)# common.cm2inch(width, height))

    figure_util.save_figures(fig, filename, ["png", "pdf"], this_dir)