def main(): args = get_arguments() utils.make_dirs(args.save) name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr() # TODO visual3D_temp.Basewriter package writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model) training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets( args, path='.././datasets') model, optimizer = medzoo.create_model(args) criterion = DiceLoss(classes=11, skip_index_after=args.classes) if args.cuda: torch.cuda.manual_seed(seed) model = model.cuda() print("Model transferred in GPU.....") print("START TRAINING...") for epoch in range(1, args.nEpochs + 1): train_stats = train.train_dice(args, epoch, model, training_generator, optimizer, criterion) val_stats = train.test_dice(args, epoch, model, val_generator, criterion) #old utils.write_train_val_score(writer, epoch, train_stats, val_stats) model.save_checkpoint(args.save, epoch, val_stats[0], optimizer=optimizer)
def main(): args = get_arguments() utils.make_dirs(args.save) train_f, val_f = utils.create_stats_files(args.save) name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr() writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model) best_prec1 = 100. training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets( args, path='.././datasets') model, optimizer = medzoo.create_model(args) criterion = DiceLoss(classes=args.classes) if args.cuda: torch.cuda.manual_seed(seed) model = model.cuda() print("Model transferred in GPU.....") print("START TRAINING...") for epoch in range(1, args.nEpochs + 1): train_stats = train.train_dice(args, epoch, model, training_generator, optimizer, criterion, train_f, writer) val_stats = train.test_dice(args, epoch, model, val_generator, criterion, val_f, writer) utils.write_train_val_score(writer, epoch, train_stats, val_stats) model.save_checkpoint(args.save, epoch, val_stats[0], optimizer=optimizer) # if epoch % 5 == 0: # utils.visualize_no_overlap(args, full_volume, affine, model, epoch, DIM, writer) #utils.save_model(model, args, val_stats[0], epoch, best_prec1) train_f.close() val_f.close()
def main(): args = get_arguments() utils.make_dirs(args.save) train_f, val_f = utils.create_stats_files(args.save) name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr() writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model) best_pred = 1.01 samples_train = 200 samples_val = 200 training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets( args, path='.././datasets', samples_train=samples_train, samples_val=samples_val) model, optimizer = medzoo.create_model(args) criterion = medzoo.DiceLoss2D(args.classes) if args.cuda: torch.cuda.manual_seed(seed) model = model.cuda() for epoch in range(1, args.nEpochs + 1): train_stats = train.train_dice(args, epoch, model, training_generator, optimizer, criterion, train_f, writer) val_stats = train.test_dice(args, epoch, model, val_generator, criterion, val_f, writer) utils.write_train_val_score(writer, epoch, train_stats, val_stats) best_pred = utils.save_model(model=model, args=args, dice_loss=val_stats[0], epoch=epoch, best_pred_loss=best_pred) train_f.close() val_f.close()