def demo(sess, net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im = cv2.imread(image_name) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(sess, net, im) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, ax, thresh=CONF_THRESH)
def time_analyse(matlab, cmd, image_filepath, par1, par2): timer = Timer() timer.tic() obj_proposals = ROI_boxes(matlab, image_filepath, cmd, par1, par2) timer.toc() time = timer.total_time box_numer = len(obj_proposals) return time, box_numer, obj_proposals
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def demo(net, matlab, image_filepath, classes, args): """Detect object classes in an image using pre-computed object proposals.""" timer = Timer() timer.tic() # Load pre-computed Selected Search object proposals obj_proposals = ROI_boxes(matlab, image_filepath, args.OP_method) if len(obj_proposals)==0: return # Load the demo image im = cv2.imread(image_filepath) # Detect all object classes and regress object bounds scores, boxes = im_detect(net, im, obj_proposals) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls in classes: cls_ind = CLASSES.index(cls) cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] keep = np.where(cls_scores >= CONF_THRESH)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] if (len(dets) == 0): global count count += 1 print('{} No Ear detected').format(count) # print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls, # CONF_THRESH) if args.video_mode: visualise(im, cls, dets, thresh=CONF_THRESH) elif args.image_path is not None: vis_detections(im, cls, dets, thresh=CONF_THRESH)
def demo(net, image_name, classes): """Detect object classes in an image using pre-computed object proposals.""" # Load pre-computed Selected Search object proposals box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '_boxes.mat') obj_proposals = sio.loadmat(box_file)['boxes'] # Load the demo image im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg') im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(net, im, obj_proposals) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls in classes: cls_ind = CLASSES.index(cls) cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] keep = np.where(cls_scores >= CONF_THRESH)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls, CONF_THRESH) vis_detections(im, cls, dets, thresh=CONF_THRESH)
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale = TextLineCfg.SCALE, max_scale = TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) # 得到经过网络的boxes textdetector = TextDetector() # 得到经过nsm的boxes,并经过文本线构造算法形成文本线 boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) img_w = img.shape[1] img_h = img.shape[0] if img_w>=200 and img_h >=200: img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) # draw_boxes(img, image_name, boxes, scale) draw_yolo_boxes(img, image_name, boxes, scale) timer.toc()
def ctpn(img): timer = Timer() timer.tic() img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) return scores, boxes, img, scale
def initModel(): global flag, basemodel if flag: flag = False timer = Timer() timer.tic() reload(densenet) input = Input(shape=(32, None, 1), name='the_input') y_pred = densenet.dense_cnn(input, nclass) basemodel = Model(inputs=input, outputs=y_pred) modelPath = os.path.join( os.getcwd(), 'densenet/models/weights_densenet.h5') if os.path.exists(modelPath): basemodel.load_weights(modelPath) timer.toc() print("\n----------------------------------------------") print(('load model took {:.3f}s for ').format(timer.total_time))
def ctpn(sess, net, image_name): img = cv2.imread(image_name) im = check_img(img) timer = Timer() timer.tic() scores, boxes = test_ctpn(sess, net, im) timer.toc() CONF_THRESH = 0.9 NMS_THRESH = 0.3 dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] keep = np.where(dets[:, 4] >= 0.7)[0] dets = dets[keep, :] line = connect_proposal(dets[:, 0:4], dets[:, 4], im.shape) save_results(image_name, im, line, thresh=0.9)
def demo(sess, net, im, image_name, out_path): #im, im_ref,im_path """Detect object classes in an image using pre-computed object proposals.""" #path_to_imgs = "/Users/dwaithe/Documents/collaborators/WaitheD/micro_vision/acquisitions/zstacks/test3/pos1_resize/" # Load the demo image #im_file = os.path.join(cfg.FLAGS2["data_dir"], path_to_imgs, image_name) #print(im_file) #im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(sess, net, im) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format( timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.7 NMS_THRESH = 0.7 out_name = os.path.join(cfg.FLAGS2["data_dir"], out_path, str(image_name) + str('.txt')) f = open(out_name, 'w') for cls_ind, cls in enumerate(cfg.FLAGS2["CLASSES"][1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] if len(inds) > 0: for i in inds: bbox = dets[i, :4] score = dets[i, -1] out_str = cls + "\t" + str(score) + "\t" + str( bbox[0]) + "\t" + str(bbox[1]) + "\t" + str( bbox[2]) + "\t" + str(bbox[3]) + "\n" f.write(out_str) #vis_detections(im, cls, dets, thresh=CONF_THRESH) f.close()
def demo(sess, net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name) im = cv2.imread(im_file) # im = cv2.imread("G:/Python Projects/py3/Faster-RCNN-TensorFlow-Python3.5-master/data/demo/000456.jpg") # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(sess, net, im) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format( timer.total_time, boxes.shape[0])) # Visualize detections for each class # score 阈值,最后画出候选框时需要,>thresh才会被画出 CONF_THRESH = 0.4 # 其实是输出了很多得分高的框,只不过后续通过nms的方式将这些框进行了合并,从而达到很好的检测效果。 # NMS_THRESH表示非极大值抑制,这个值越小表示要求的红框重叠度越小,0.0表示不允许重叠。 NMS_THRESH = 0.1 # python-opencv 中读取图片默认保存为[w,h,channel](w,h顺序不确定) # 其中 channel:BGR 存储,而画图时,需要按RGB格式,因此此处作转换。 im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) # 进行非极大值抑制,得到抑制后的 dets keep = nms(dets, NMS_THRESH) dets = dets[keep, :] # vis_detections(im, cls, dets, thresh=CONF_THRESH) # 画框 vis_detections(im, cls, dets, ax, thresh=CONF_THRESH) plt.axis('off') plt.tight_layout() plt.draw()
def ctpn(sess, training_flag, net, image_name, save_all_dir): timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, training_flag, net, img) textdetector = TextDetector() boxes1, boxes2, boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) # img1 = img.copy() # draw_middle_boxes(img1, boxes1, scale) # img2 = img.copy() # draw_middle_boxes(img2, boxes2, scale) draw_boxes(img, image_name, boxes, scale, save_all_dir) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def train_model(self, max_iters): """Network training loop.""" last_snapshot_iter = -1 timer = Timer() while self.solver.iter < max_iters: # Make one SGD update timer.tic() self.solver.step(1) timer.toc() if self.solver.iter % (10 * self.solver_param.display) == 0: print 'speed: {:.3f}s / iter'.format(timer.average_time) if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = self.solver.iter self.snapshot() if last_snapshot_iter != self.solver.iter: self.snapshot()
def ctpn(sess, net, image_name): global detect_graph timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) with detect_graph.as_default(): scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) return boxes,img,scale
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) sort_index = np.argsort(boxes[:, -1])[::-1] boxes = boxes[sort_index] # print(boxes) texts = draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) return texts
def demo(self, image_root, image_name): # Load the demo image image = readimage(image_root) timer = Timer() timer.tic() prob = self.classify(image) timer.toc() print('Detection took {:.3f}s '.format(timer.total_time)) save_classify_image_dir = os.path.join(self.output_dir, self._ind_to_class[prob]) if not os.path.exists(save_classify_image_dir): os.makedirs(save_classify_image_dir) image = Image.fromarray(np.array(image)) save_classify_image_root = os.path.join(save_classify_image_dir, image_name) image.save(save_classify_image_root)
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) img = docRot(img) # cv2.imwrite(os.path.join("./data", image_name.split(os.path.sep)[-1]), img) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def demo(sess, net): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image # im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name) CONF_THRESH = 0.6 NMS_THRESH = 0.1 # 非极大值抑制 # server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # server.bind(("localhost", 8888)) # server.listen(1) # tcp连接队列的大小,即连接数 im_names = ['39.jpg', '40.jpg', '41.jpg', '42.jpg', '43.jpg', '44.jpg'] im=cv2.imread("init.jpg") #目的是为了初始化相关变量,避免首次检测延时过大 scores, boxes = im_detect(sess, net, im) # connection, address = server.accept() #阻塞,等待连接 # print(connection, address) recv_str =im_names[0] print(recv_str) im_name =recv_str #im_names[int(recv_str)] #'G:/40.jpg' # # saveImgPath+=im_name print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Demo for {}'.format(im_name)) timer = Timer() timer.tic() im = cv2.imread(im_name) try: im.shape except: print('fail to read '+im_name) return scores, boxes = im_detect(sess, net, im) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0])) result=getResult(scores, boxes,CONF_THRESH,NMS_THRESH) #保存图像等操作 # timer2 = Timer() # timer2.tic() drawDefect(im,scores, boxes, CONF_THRESH, NMS_THRESH) cv2.imwrite(saveImgPath, im)
def ctpn(sess, net, image_name, pdf_file_name, coord_folder, debug): timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() #author's algorithms boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_ctpn_boxes(img, image_name, boxes, scale, pdf_file_name, coord_folder, debug) timer.toc() if debug is True: print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def demo(net, matlab, image_filepath, classes, args): """Detect object classes in an image using pre-computed object proposals.""" timer = Timer() timer.tic() # Load pre-computed Selected Search object proposals obj_proposals = ROI_boxes(matlab, image_filepath, args.OP_method) if len(obj_proposals) == 0: return # Load the demo image im = cv2.imread(image_filepath) # Detect all object classes and regress object bounds scores, boxes = im_detect(net, im, obj_proposals) timer.toc() print('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls in classes: cls_ind = CLASSES.index(cls) cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] keep = np.where(cls_scores >= CONF_THRESH)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] if (len(dets) == 0): global count count += 1 print('{} No Ear detected').format(count) # print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls, # CONF_THRESH) if args.video_mode: visualise(im, cls, dets, thresh=CONF_THRESH) elif args.image_path is not None: vis_detections(im, cls, dets, thresh=CONF_THRESH)
def demo(sess, net, image_name, output_path): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image image_path = image_path_from_index(image_name) im = cv2.imread(image_path) # Detect all object classes and regress object bounds timer = Timer() timer.tic() # 此处的boxes是经过bbox_pre修正过的Bbox的位置坐标,并且对于预测的每一个类别,都有一个预测的Bbox坐标 scores, boxes = im_detect(sess, net, im) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format( timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.1 NMS_THRESH = 0.1 #对每个类别进行一次画图 for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) #利用非极大值抑制,从300个proposal中剔除掉与更大得分的proposal的IOU大于0.1的proposal keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] dets = dets[inds, :] output_dir = os.path.join(output_path, "comp3_det_test_{:s}.txt".format(cls)) with open(output_dir, 'a') as f: for i in range(len(dets)): bbox = dets[i, :4] score = dets[i, -1] bbox_result = "%s\t%f\t%f\t%f\t%f\t%f\n" % ( image_name, score, bbox[0], bbox[1], bbox[2], bbox[3]) f.write(bbox_result)
def demo(self, image_name, is_init=True): """Detect object classes in an image using pre-computed object proposals.""" # Detect all object classes and regress object bounds timer = Timer() timer.tic() if is_init: raw_scores, raw_boxes, self.feature_map, self.rpn_boxes, self.rpn_scores, self.im_scales = im_detect( self.sess, self.net, image_name, is_part=False) CONF_THRESH = self.score_thresh NMS_THRESH = self.nms_thresh self.objects = [] for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = raw_boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = raw_scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] if len(inds) > 0: for i in inds: bbox = dets[i, :4] score = dets[i, -1] box_height = bbox[3] - bbox[1] box_width = bbox[2] - bbox[0] c_x = np.round(bbox[0] + box_width / 2.0) c_y = np.round(bbox[1] + box_height / 2.0) if cls == 'stawberry': cls = 'strawberry' object_coordinates = { 'name': cls, 'score': score, 'boxes': list([c_x, c_y, box_width, box_height]) } self.objects.append(object_coordinates) else: _, _, self.feature_map, self.rpn_boxes, self.rpn_scores, self.im_scales = im_detect( self.sess, self.net, image_name, is_part=True) timer.toc()
def ctpn(sess, net, image_name, result_file, img_type): timer = Timer() timer.tic() img = cv2.imread(image_name) resized_img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) # detect single text scores, boxes = test_ctpn(sess, net, resized_img) # connect text into lines textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) # add post process to filter unrelated boxes post_process(boxes, resized_img, img_type, scale) # draw boxes and write to file draw_boxes(resized_img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def ctpn(sess, net, image_name): timer = Timer() timer.tic() img = cv2.imread(image_name) if img is None: print("No File") exit() img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() # print(('Detection took {:.3f}s for ' # '{:d} object proposals').format(timer.total_time, boxes.shape[0])) print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
def ctpn(sess, net, image_name,save_path1,save_path2): timer = Timer() timer.tic() #读取图片 img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) #灰度化处理 img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2RGB) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes2(img, boxes,image_name, save_path2,scale) draw_boxes(img, boxes,image_name, save_path1,scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
def ctpn(sess, net, image_name): print('CTPN - start') timer = Timer() timer.tic() img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) print('1') scores, boxes = test_ctpn(sess, net, img) print('2') textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) return np.int32(boxes / scale)
def demo(image_name, out_file, sess): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im = cv2.imread(image_name) blobs, im_scales = _get_blobs(im) assert len(im_scales) == 1, "Only single-image batch implemented" im_blob = blobs['data'] blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) print(blobs["im_info"]) #Detect all object classes and regress object bounds timer = Timer() timer.tic() print("====freeze_graph_test()-> blobs====\n", blobs) scores, boxes = freeze_graph_test(sess, blobs) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format( timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.5 NMS_THRESH = 0.3 # im = im[:, :, (2, 1, 0)] for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, out_file, thresh=CONF_THRESH) cv2.imencode('.jpg', im)[1].tofile(out_file)
class ProgressBar(): def __init__(self, epoch_count, one_batch_count, pattern): self.total_count = one_batch_count self.current_index = 0 self.current_epoch = 1 self.epoch_count = epoch_count self.train_timer = Timer() self.pattern = pattern def show(self, currentEpoch, *args): self.current_index += 1 if self.current_index == 1: self.train_timer.tic() self.current_epoch = currentEpoch perCount = int(self.total_count / 100) # 7 perCount = 1 if perCount == 0 else perCount percent = int(self.current_index / perCount) if self.total_count % perCount == 0: dotcount = int(self.total_count / perCount) else: dotcount = int(self.total_count / perCount) s1 = "\rEpoch:%d / %d [%s%s] %d / %d " % ( self.current_epoch, self.epoch_count, "*" * (int(percent)), " " * (dotcount - int(percent)), self.current_index, self.total_count) s2 = self.pattern % tuple([float("{:.3f}".format(x)) for x in args]) s3 = "%s,%s,remain=%s" % (s1, s2, self.train_timer.remain( self.current_index, self.total_count)) sys.stdout.write(s3) sys.stdout.flush() if self.current_index == self.total_count: self.train_timer.toc() s3 = "%s,%s,total=%s" % (s1, s2, self.train_timer.averageTostr()) sys.stdout.write(s3) sys.stdout.flush() self.current_index = 0 print("\r")
def ctpn(sess, net, image_name): img = cv2.imread(image_name) im = check_img(img) timer = Timer() timer.tic() scores, boxes = test_ctpn(sess, net, im) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.9 NMS_THRESH = 0.3 dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] keep = np.where(dets[:, 4] >= 0.7)[0] dets = dets[keep, :] line = connect_proposal(dets[:, 0:4], dets[:, 4], im.shape) save_results(image_name, im, line,thresh=0.9)
def demo(sess, net, image_id, image_name): im_file = os.path.join(cfg.FLAGS2["data_dir"], 'image', image_name) im = cv2.imread(im_file) timer = Timer() timer.tic() scores, boxes = im_detect(sess, net, im) timer.toc() # print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0])) CONF_THRESH = 0.1 NMS_THRESH = 0.1 for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, image_id, image_name, thresh=CONF_THRESH)
def detect(self, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image # Detect all object classes and regress object bounds image = readimage(image_name) image = image_transform_1_3(image) timer = Timer() timer.tic() scores, boxes = self.im_detect(image) timer.toc() # print('kkk', np.argmax(scores, axis=1)) # print('rois--------------', scores) print('Detection took {:.3f}s for ' '{:d} object proposals'.format(timer.total_time, boxes.shape[0])) CONF_THRESH = 0.7 NMS_THRESH = 0.1 dets_list = [] for cls_ind, cls in enumerate(self.classes_detect[1:]): inds = np.where(scores[:, cls_ind] > CONF_THRESH)[0] cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets[inds, :], NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] cls_ind_list = np.empty((len(inds), 1), np.int32) cls_ind_list.fill(cls_ind) dets = np.hstack((dets[inds, :-1], cls_ind_list)) dets_list.append(dets) dets = np.vstack(dets_list) dets[:, 0:2] = np.floor(dets[:, 0:2]) dets[:, 2:] = np.ceil(dets[:, 2:]) dets = dets.astype(np.int32) print('jjj', dets) self.vis(image, image_name, dets) return dets
def test_image(self, sess, image, im_info): feed_dict = {self._image: image, self._im_info: im_info} # cls_score, cls_prob, bbox_pred, rois = sess.run([self._predictions["cls_score"], # self._predictions['cls_prob'], # self._predictions['bbox_pred'], # self._predictions['rois']], # feed_dict=feed_dict) timer = Timer() timer.tic() predictions = sess.run(self._predictions, feed_dict=feed_dict) timer.toc() print('Prediction took {:.3f}s'.format(timer.total_time)) # keep M1 M2 M3 branch to detect small/medium/large faces if 'M1' in self._feat_branches: cls_prob = np.concatenate((predictions["M1"]["rois_scores"], predictions["M2"]["rois_scores"], predictions["M3"]["rois_scores"]), axis=0) rois = np.concatenate( (predictions["M1"]["rois"], predictions["M2"]["rois"], predictions["M3"]["rois"]), axis=0) kpoints = np.concatenate( (predictions["M1"]["kpoints"], predictions["M2"]["kpoints"], predictions["M3"]["kpoints"]), axis=0) # discard M1 branch, only keep M2 and M3 branches to detect medium and large faces else: print('do not contain M1 branch!!!!') cls_prob = np.concatenate((predictions["M2"]["rois_scores"], predictions["M3"]["rois_scores"]), axis=0) rois = np.concatenate( (predictions["M2"]["rois"], predictions["M3"]["rois"]), axis=0) kpoints = np.concatenate( (predictions["M2"]["kpoints"], predictions["M3"]["kpoints"]), axis=0) return cls_prob, rois, kpoints
def ctpn(sess, net, image_name): timer = Timer() timer.tic() #cp image from s3 awss3.getInputImage(image_name) image_name = './data/demo/' + image_name img = cv2.imread(image_name) img, scale = resize_im(img, scale=TextLineCfg.SCALE, max_scale=TextLineCfg.MAX_SCALE) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) draw_boxes(img, image_name, boxes, scale) timer.toc() result = ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) print(result) return result
def demo(sess, net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image # G:\PyCharm\PyCharmSpaceWork\Faster-RCNN-TensorFlow2-Python3\data\demo\000001.jpg im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name) # print("==================im_file===========", im_file) # opencv读取图片 im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() # 调用了lib/model/test.py里的im_detect()方法,返回的是分数和检测框。 scores, boxes = im_detect(sess, net, im) timer.toc() print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.1 NMS_THRESH = 0.1 for cls_ind, cls in enumerate(CLASSES[1:]): '''cls 标签的类型 roses''' cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) # [[ 0. 7.872568 63. 55.951324 0.7933805]] # 最后一个值是相似度 dets = dets[keep, :] vis_detections(im, cls, dets, image_name=image_name, thresh=CONF_THRESH ) # 保存标记的图片 if not os.path.exists(SAVA_DIR): os.makedirs(SAVA_DIR) plt.savefig(os.path.join(SAVA_DIR, image_name))
def validation(self, index, mode): ##################################### # Preparation ##################################### #------------------------------- # metric #------------------------------- mAP_RPN = Evaluate_metric(1, overlap_threshold=cfg.MAP_THRESH) mAP_CLASSIFICATION = Evaluate_metric(cfg.NUM_CLASSES, ignore_class=[0], overlap_threshold=cfg.MAP_THRESH) mAP_MASK = Evaluate_metric(cfg.NUM_CLASSES, ignore_class=[0], overlap_threshold=cfg.MAP_THRESH) if mode == 'val': data_loader = self.dataloader_val data_logger = self.logger_val elif mode == 'trainval': data_loader = self.dataloader_trainval data_logger = self.logger_trainval #################################### # Accumulate data #################################### timer = Timer() timer.tic() print('starting validation....') for iter, blobs in enumerate(tqdm(data_loader)): # if no box: skip if len(blobs['gt_box']) == 0: continue if cfg.USE_IMAGES: grid_shape = blobs['data'].shape[-3:] projection_helper = ProjectionHelper(cfg.INTRINSIC, cfg.PROJ_DEPTH_MIN, cfg.PROJ_DEPTH_MAX, cfg.DEPTH_SHAPE, grid_shape, cfg.VOXEL_SIZE) proj_mapping = [projection_helper.compute_projection(d.cuda(), c.cuda(), t.cuda()) for d, c, t in zip(blobs['nearest_images']['depths'][0], blobs['nearest_images']['poses'][0], blobs['nearest_images']['world2grid'][0])] if None in proj_mapping: #invalid sample continue blobs['proj_ind_3d'] = [] blobs['proj_ind_2d'] = [] proj_mapping0, proj_mapping1 = zip(*proj_mapping) blobs['proj_ind_3d'].append(torch.stack(proj_mapping0)) blobs['proj_ind_2d'].append(torch.stack(proj_mapping1)) self.net.forward(blobs, 'TEST', []) #-------------------------------------- # RPN: loss, metric #-------------------------------------- if cfg.USE_RPN: # (n, 6) gt_box = blobs['gt_box'][0].numpy()[:, 0:6] gt_box_label = np.zeros(gt_box.shape[0]) try: pred_box_num = (self.net._predictions['roi_scores'][0][:, 0] > cfg.ROI_THRESH).nonzero().size(0) pred_box = self.net._predictions['rois'][0].cpu().numpy()[:pred_box_num] pred_box_label = np.zeros(pred_box_num) pred_box_score = self.net._predictions['roi_scores'][0].cpu().numpy()[:pred_box_num, 0] except: pred_box = self.net._predictions['rois'][0].cpu().numpy()[:1] pred_box_label = np.zeros(1) pred_box_score = self.net._predictions['roi_scores'][0].cpu().numpy()[:1, 0] #evaluation metric mAP_RPN.evaluate(pred_box, pred_box_label, pred_box_score, gt_box, gt_box_label) #-------------------------------------- # Classification: loss, metric #-------------------------------------- if cfg.USE_CLASS: # groundtruth gt_box = blobs['gt_box'][0].numpy()[:, 0:6] gt_class = blobs['gt_box'][0][:, 6].numpy() # predictions pred_class = self.net._predictions['cls_pred'].data.cpu().numpy() # only predictions['rois'] is list and is Tensor / others are no list and Variable rois = self.net._predictions['rois'][0].cpu() box_reg_pre = self.net._predictions["bbox_pred"].data.cpu().numpy() box_reg = np.zeros((box_reg_pre.shape[0], 6)) pred_conf_pre = self.net._predictions['cls_prob'].data.cpu().numpy() pred_conf = np.zeros((pred_conf_pre.shape[0])) for pred_ind in range(pred_class.shape[0]): box_reg[pred_ind, :] = box_reg_pre[pred_ind, pred_class[pred_ind]*6:(pred_class[pred_ind]+1)*6] pred_conf[pred_ind] = pred_conf_pre[pred_ind, pred_class[pred_ind]] pred_box = bbox_transform_inv(rois, torch.from_numpy(box_reg).float()) pred_box = clip_boxes(pred_box, self.net._scene_info[:3]).numpy() # pickup sort_index = [] for conf_index in range(pred_conf.shape[0]): if pred_conf[conf_index] > cfg.CLASS_THRESH: sort_index.append(True) else: sort_index.append(False) # eliminate bad box for idx, box in enumerate(pred_box): if round(box[0]) >= round(box[3]) or round(box[1]) >= round(box[4]) or round(box[2]) >= round(box[5]): sort_index[idx] = False if len(pred_box[sort_index]) == 0: print('no pred box') if iter < cfg.VAL_NUM: os.makedirs('{}/{}'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), exist_ok=True) np.save('{}/{}/pred_class'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_class) np.save('{}/{}/pred_conf'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_conf) np.save('{}/{}/pred_box'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_box) np.save('{}/{}/scene'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), np.where(blobs['data'][0,0].numpy() <= 1, 1, 0)) np.save('{}/{}/gt_class'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), gt_class) np.save('{}/{}/gt_box'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), gt_box) mAP_CLASSIFICATION.evaluate( pred_box[sort_index], pred_class[sort_index], pred_conf[sort_index], gt_box, gt_class) #-------------------------------------- # MASK: loss, metric #-------------------------------------- if cfg.USE_MASK: # gt data gt_box = blobs['gt_box'][0].numpy()[:, 0:6] gt_class = blobs['gt_box'][0][:, 6].numpy() gt_mask = blobs['gt_mask'][0] pred_class = self.net._predictions['cls_pred'].data.cpu().numpy() pred_conf = np.zeros((pred_class.shape[0])) for pred_ind in range(pred_class.shape[0]): pred_conf[pred_ind] = self.net._predictions['cls_prob'].data.cpu().numpy()[pred_ind, pred_class.data[pred_ind]] # pickup sort_index = pred_conf > cfg.CLASS_THRESH # eliminate bad box for idx, box in enumerate(pred_box): if round(box[0]) >= round(box[3]) or round(box[1]) >= round(box[4]) or round(box[2]) >= round(box[5]): sort_index[idx] = False pred_mask = [] mask_ind = 0 for ind, cls in enumerate(pred_class): if sort_index[ind]: mask = self.net._predictions['mask_pred'][0][mask_ind][0][cls].data.cpu().numpy() mask = np.where(mask >=cfg.MASK_THRESH, 1, 0).astype(np.float32) pred_mask.append(mask) mask_ind += 1 if iter < cfg.VAL_NUM: pickle.dump(pred_mask, open('{}/{}/pred_mask'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) pickle.dump(sort_index, open('{}/{}/pred_mask_index'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) pickle.dump(gt_mask, open('{}/{}/gt_mask'.format(cfg.VAL_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) mAP_MASK.evaluate_mask( pred_box[sort_index], pred_class[sort_index], pred_conf[sort_index], pred_mask, gt_box, gt_class, gt_mask, self.net._scene_info) self.net.delete_intermediate_states() timer.toc() print('It took {:.3f}s for Validation on chunks'.format(timer.total_time())) ################################### # Summary ################################### if cfg.USE_RPN: mAP_RPN.finalize() print('AP of RPN: {}'.format(mAP_RPN.mAP())) data_logger.scalar_summary('AP_ROI', mAP_RPN.mAP(), index) if cfg.USE_CLASS: mAP_CLASSIFICATION.finalize() print('mAP of CLASSIFICATION: {}'.format(mAP_CLASSIFICATION.mAP())) for class_ind in range(cfg.NUM_CLASSES): if class_ind not in mAP_CLASSIFICATION.ignore_class: print('class {}: {}'.format(class_ind, mAP_CLASSIFICATION.AP(class_ind))) data_logger.scalar_summary('mAP_CLASSIFICATION', mAP_CLASSIFICATION.mAP(), index) if cfg.USE_MASK: mAP_MASK.finalize() print('mAP of mask: {}'.format(mAP_MASK.mAP())) for class_ind in range(cfg.NUM_CLASSES): if class_ind not in mAP_MASK.ignore_class: print('class {}: {}'.format(class_ind, mAP_MASK.AP(class_ind))) data_logger.scalar_summary('mAP_MASK', mAP_MASK.mAP(), index)
def train_model(self, epochs): #1. construct the computation graph self.net.init_modules() #save net structure to data folder net_f = open(os.path.join(self.output_dir, 'nn.txt'), 'w') net_f.write(str(self.net)) net_f.close() #find previous snapshot lsf, nfiles, sfiles = self.find_previous() #2. restore weights if lsf == 0: lr, last_iter, stepsizes, self.np_paths, self.ss_paths = self.initialize() else: lr, last_iter, stepsizes, self.np_paths, self.ss_paths = self.restore(str(sfiles[-1]), str(nfiles[-1])) #3. fix weights and eval mode self.fix_eval_parts() # construct optimizer self.construct_optimizer(lr) if len(stepsizes) != 0: next_stepsize = stepsizes.pop(0) else: next_stepsize = -1 train_timer = Timer() current_snapshot_epoch = int(last_iter / len(self.dataloader_train)) for epoch in range(current_snapshot_epoch, epochs): print("start epoch {}".format(epoch)) with output(initial_len=9, interval=0) as content: for iter, blobs in enumerate(tqdm(self.dataloader_train)): last_iter += 1 # adjust learning rate if last_iter == next_stepsize: lr *= cfg.GAMMA self.scale_lr(self.optimizer, lr) if len(stepsizes) != 0: next_stepsize = stepsizes.pop(0) batch_size = blobs['data'].shape[0] if len(blobs['gt_box']) < batch_size: #invalid sample continue train_timer.tic() # IMAGE PART if cfg.USE_IMAGES: grid_shape = blobs['data'].shape[-3:] projection_helper = ProjectionHelper(cfg.INTRINSIC, cfg.PROJ_DEPTH_MIN, cfg.PROJ_DEPTH_MAX, cfg.DEPTH_SHAPE, grid_shape, cfg.VOXEL_SIZE) proj_mapping = [[projection_helper.compute_projection(d.cuda(), c.cuda(), t.cuda()) for d, c, t in zip(blobs['nearest_images']['depths'][i], blobs['nearest_images']['poses'][i], blobs['nearest_images']['world2grid'][i])] for i in range(batch_size)] jump_flag = False for i in range(batch_size): if None in proj_mapping[i]: #invalid sample jump_flag = True break if jump_flag: continue blobs['proj_ind_3d'] = [] blobs['proj_ind_2d'] = [] for i in range(batch_size): proj_mapping0, proj_mapping1 = zip(*proj_mapping[i]) blobs['proj_ind_3d'].append(torch.stack(proj_mapping0)) blobs['proj_ind_2d'].append(torch.stack(proj_mapping1)) self.net.forward(blobs) self.optimizer.zero_grad() self.net._losses["total_loss"].backward() self.optimizer.step() train_timer.toc() # Display training information if iter % (cfg.DISPLAY) == 0: self.log_print(epoch*len(self.dataloader_train)+iter, lr, content, train_timer.average_time()) self.net.delete_intermediate_states() # validate if satisfying the time criterion if train_timer.total_time() / 3600 >= cfg.VAL_TIME: print('------------------------VALIDATION------------------------------') self.validation(last_iter, 'val') print('------------------------TRAINVAL--------------------------------') self.validation(last_iter, 'trainval') # snapshot if cfg.VAL_TIME > 0.0: ss_path, np_path = self.snapshot(last_iter) self.np_paths.append(np_path) self.ss_paths.append(ss_path) #remove old snapshots if too many if len(self.np_paths) > cfg.SNAPSHOT_KEPT and cfg.SNAPSHOT_KEPT: self.remove_snapshot() train_timer.clean_total_time()
def train_model(self, sess, max_iters, restore=False): """Network training loop.""" data_layer = get_data_layer(self.roidb, self.imdb.num_classes) total_loss,model_loss, rpn_cross_entropy, rpn_loss_box=self.net.build_loss(ohem=cfg.TRAIN.OHEM) # scalar summary tf.summary.scalar('rpn_reg_loss', rpn_loss_box) tf.summary.scalar('rpn_cls_loss', rpn_cross_entropy) tf.summary.scalar('model_loss', model_loss) tf.summary.scalar('total_loss',total_loss) summary_op = tf.summary.merge_all() log_image, log_image_data, log_image_name =\ self.build_image_summary() # optimizer lr = tf.Variable(cfg.TRAIN.LEARNING_RATE, trainable=False) if cfg.TRAIN.SOLVER == 'Adam': opt = tf.train.AdamOptimizer(cfg.TRAIN.LEARNING_RATE) elif cfg.TRAIN.SOLVER == 'RMS': opt = tf.train.RMSPropOptimizer(cfg.TRAIN.LEARNING_RATE) else: # lr = tf.Variable(0.0, trainable=False) momentum = cfg.TRAIN.MOMENTUM opt = tf.train.MomentumOptimizer(lr, momentum) global_step = tf.Variable(0, trainable=False) with_clip = True if with_clip: tvars = tf.trainable_variables() grads, norm = tf.clip_by_global_norm(tf.gradients(total_loss, tvars), 10.0) train_op = opt.apply_gradients(list(zip(grads, tvars)), global_step=global_step) else: train_op = opt.minimize(total_loss, global_step=global_step) # intialize variables sess.run(tf.global_variables_initializer()) restore_iter = 0 # load vgg16 if self.pretrained_model is not None and not restore: try: print(('Loading pretrained model ' 'weights from {:s}').format(self.pretrained_model)) self.net.load(self.pretrained_model, sess, True) except: raise Exception('Check your pretrained model {:s}'.format(self.pretrained_model)) # resuming a trainer if restore: try: ckpt = tf.train.get_checkpoint_state(self.output_dir) print('Restoring from {}...'.format(ckpt.model_checkpoint_path), end=' ') self.saver.restore(sess, ckpt.model_checkpoint_path) stem = os.path.splitext(os.path.basename(ckpt.model_checkpoint_path))[0] restore_iter = int(stem.split('_')[-1]) sess.run(global_step.assign(restore_iter)) print('done') except: raise 'Check your pretrained {:s}'.format(ckpt.model_checkpoint_path) last_snapshot_iter = -1 timer = Timer() for iter in range(restore_iter, max_iters): timer.tic() # learning rate if iter != 0 and iter % cfg.TRAIN.STEPSIZE == 0: sess.run(tf.assign(lr, lr.eval() * cfg.TRAIN.GAMMA)) print(lr) # get one batch blobs = data_layer.forward() feed_dict={ self.net.data: blobs['data'], self.net.im_info: blobs['im_info'], self.net.keep_prob: 0.5, self.net.gt_boxes: blobs['gt_boxes'], self.net.gt_ishard: blobs['gt_ishard'], self.net.dontcare_areas: blobs['dontcare_areas'] } res_fetches=[] fetch_list = [total_loss,model_loss, rpn_cross_entropy, rpn_loss_box, summary_op, train_op] + res_fetches total_loss_val,model_loss_val, rpn_loss_cls_val, rpn_loss_box_val, \ summary_str, _ = sess.run(fetches=fetch_list, feed_dict=feed_dict) self.writer.add_summary(summary=summary_str, global_step=global_step.eval()) _diff_time = timer.toc(average=False) if (iter) % (cfg.TRAIN.DISPLAY) == 0: print('iter: %d / %d, total loss: %.4f, model loss: %.4f, rpn_loss_cls: %.4f, rpn_loss_box: %.4f, lr: %f'%\ (iter, max_iters, total_loss_val,model_loss_val,rpn_loss_cls_val,rpn_loss_box_val,lr.eval())) print('speed: {:.3f}s / iter'.format(_diff_time)) if (iter+1) % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter self.snapshot(sess, iter) if last_snapshot_iter != iter: self.snapshot(sess, iter)
def test(net, data_loader, data_logger): ##################################### # Preparation ##################################### os.makedirs(cfg.TEST_SAVE_DIR, exist_ok=True) mAP_CLASSIFICATION = Evaluate_metric(cfg.NUM_CLASSES, ignore_class=[0], overlap_threshold=cfg.MAP_THRESH) mAP_MASK = Evaluate_metric(cfg.NUM_CLASSES, ignore_class=[0], overlap_threshold=cfg.MAP_THRESH) #################################### # Accumulate data #################################### pred_all = {} gt_all = {} timer = Timer() timer.tic() print('starting test on whole scan....') for iter, blobs in enumerate(tqdm(data_loader)): try: gt_box = blobs['gt_box'][0].numpy()[:, 0:6] gt_class = blobs['gt_box'][0][:, 6].numpy() except: continue # color proj killing_inds = None if cfg.USE_IMAGES: grid_shape = blobs['data'].shape[-3:] projection_helper = ProjectionHelper(cfg.INTRINSIC, cfg.PROJ_DEPTH_MIN, cfg.PROJ_DEPTH_MAX, cfg.DEPTH_SHAPE, grid_shape, cfg.VOXEL_SIZE) if grid_shape[0]*grid_shape[1]*grid_shape[2] > cfg.MAX_VOLUME or blobs['nearest_images']['depths'][0].shape[0] > cfg.MAX_IMAGE: proj_mapping = [projection_helper.compute_projection(d, c, t) for d, c, t in zip(blobs['nearest_images']['depths'][0], blobs['nearest_images']['poses'][0], blobs['nearest_images']['world2grid'][0])] else: proj_mapping = [projection_helper.compute_projection(d.cuda(), c.cuda(), t.cuda()) for d, c, t in zip(blobs['nearest_images']['depths'][0], blobs['nearest_images']['poses'][0], blobs['nearest_images']['world2grid'][0])] killing_inds = [] real_proj_mapping = [] if None in proj_mapping: #invalid sample for killing_ind, killing_item in enumerate(proj_mapping): if killing_item == None: killing_inds.append(killing_ind) else: real_proj_mapping.append(killing_item) print('{}: (invalid sample: no valid projection)'.format(blobs['id'])) else: real_proj_mapping = proj_mapping blobs['proj_ind_3d'] = [] blobs['proj_ind_2d'] = [] proj_mapping0, proj_mapping1 = zip(*real_proj_mapping) blobs['proj_ind_3d'].append(torch.stack(proj_mapping0)) blobs['proj_ind_2d'].append(torch.stack(proj_mapping1)) net.forward(blobs, 'TEST', killing_inds) # test with detection pipeline pred_class = net._predictions['cls_pred'].data.cpu().numpy() rois = net._predictions['rois'][0].cpu() box_reg_pre = net._predictions["bbox_pred"].data.cpu().numpy() box_reg = np.zeros((box_reg_pre.shape[0], 6)) pred_conf_pre = net._predictions['cls_prob'].data.cpu().numpy() pred_conf = np.zeros((pred_conf_pre.shape[0])) for pred_ind in range(pred_class.shape[0]): box_reg[pred_ind, :] = box_reg_pre[pred_ind, pred_class[pred_ind]*6:(pred_class[pred_ind]+1)*6] pred_conf[pred_ind] = pred_conf_pre[pred_ind, pred_class[pred_ind]] pred_box = bbox_transform_inv(rois, torch.from_numpy(box_reg).float()) pred_box = clip_boxes(pred_box, net._scene_info[:3]).numpy() os.makedirs('{}/{}'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), exist_ok=True) np.save('{}/{}/pred_class'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_class) np.save('{}/{}/pred_conf'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_conf) np.save('{}/{}/pred_box'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), pred_box) np.save('{}/{}/scene'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), np.where(blobs['data'][0,0].numpy() <= 1, 1, 0)) np.save('{}/{}/gt_class'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), gt_class) np.save('{}/{}/gt_box'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), gt_box) # pickup sort_index = [] for conf_index in range(pred_conf.shape[0]): if pred_conf[conf_index] > cfg.CLASS_THRESH: sort_index.append(True) else: sort_index.append(False) # eliminate bad box for idx, box in enumerate(pred_box): if round(box[0]) >= round(box[3]) or round(box[1]) >= round(box[4]) or round(box[2]) >= round(box[5]): sort_index[idx] = False mAP_CLASSIFICATION.evaluate( pred_box[sort_index], pred_class[sort_index], pred_conf[sort_index], gt_box, gt_class) if cfg.USE_MASK: gt_mask = blobs['gt_mask'][0] # pickup sort_index = [] for conf_index in range(pred_conf.shape[0]): if pred_conf[conf_index] > cfg.CLASS_THRESH: sort_index.append(True) else: sort_index.append(False) # eliminate bad box for idx, box in enumerate(pred_box): if round(box[0]) >= round(box[3]) or round(box[1]) >= round(box[4]) or round(box[2]) >= round(box[5]): sort_index[idx] = False # test with mask pipeline net.mask_backbone.eval() net.mask_backbone.cuda() mask_pred_batch = [] for net_i in range(1): mask_pred = [] for pred_box_ind, pred_box_item in enumerate(pred_box): if sort_index[pred_box_ind]: mask_pred.append(net.mask_backbone(Variable(blobs['data'].cuda())[net_i:net_i+1, :, int(round(pred_box_item[0])):int(round(pred_box_item[3])), int(round(pred_box_item[1])):int(round(pred_box_item[4])), int(round(pred_box_item[2])):int(round(pred_box_item[5])) ], [] if cfg.USE_IMAGES else None)) mask_pred_batch.append(mask_pred) net._predictions['mask_pred'] = mask_pred_batch # save test result pred_mask = [] mask_ind = 0 for ind, cls in enumerate(pred_class): if sort_index[ind]: mask = net._predictions['mask_pred'][0][mask_ind][0][cls].data.cpu().numpy() mask = np.where(mask >=cfg.MASK_THRESH, 1, 0).astype(np.float32) pred_mask.append(mask) mask_ind += 1 pickle.dump(pred_mask, open('{}/{}/pred_mask'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) pickle.dump(sort_index, open('{}/{}/pred_mask_index'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) pickle.dump(gt_mask, open('{}/{}/gt_mask'.format(cfg.TEST_SAVE_DIR, blobs['id'][0].split('/')[-1][:12]), 'wb')) mAP_MASK.evaluate_mask( pred_box[sort_index], pred_class[sort_index], pred_conf[sort_index], pred_mask, gt_box, gt_class, gt_mask, net._scene_info) timer.toc() print('It took {:.3f}s for test on whole scenes'.format(timer.total_time())) ################################### # Summary ################################### if cfg.USE_CLASS: mAP_CLASSIFICATION.finalize() print('mAP of CLASSIFICATION: {}'.format(mAP_CLASSIFICATION.mAP())) for class_ind in range(cfg.NUM_CLASSES): if class_ind not in mAP_CLASSIFICATION.ignore_class: print('class {}: {}'.format(class_ind, mAP_CLASSIFICATION.AP(class_ind))) if cfg.USE_MASK: mAP_MASK.finalize() print('mAP of mask: {}'.format(mAP_MASK.mAP())) for class_ind in range(cfg.NUM_CLASSES): if class_ind not in mAP_MASK.ignore_class: print('class {}: {}'.format(class_ind, mAP_MASK.AP(class_ind)))