Exemplo n.º 1
0
    def init(self,first_frame,bbox):
        assert len(first_frame.shape)==3 and first_frame.shape[2]==3
        if self.features=='gray':
            first_frame=cv2.cvtColor(first_frame,cv2.COLOR_BGR2GRAY)
        bbox = np.array(bbox).astype(np.int64)
        x0, y0, w, h = tuple(bbox)
        self.crop_size = (int(np.floor(w * (1 + self.padding))), int(np.floor(h * (1 + self.padding))))# for vis
        self._center = (np.floor(x0 + w / 2),np.floor(y0 + h / 2))
        self.w, self.h = w, h
        self.window_size=(int(np.floor(w*(1+self.padding)))//self.cell_size,int(np.floor(h*(1+self.padding)))//self.cell_size)
        self._window = cos_window(self.window_size)

        s=np.sqrt(w*h)*self.output_sigma_factor/self.cell_size
        self.yf = fft2(gaussian2d_rolled_labels(self.window_size, s))

        if self.features=='gray' or self.features=='color':
            first_frame = first_frame.astype(np.float32) / 255
            x=self._crop(first_frame,self._center,(w,h))
            x=x-np.mean(x)
        elif self.features=='hog':
            x=self._crop(first_frame,self._center,(w,h))
            x=cv2.resize(x,(self.window_size[0]*self.cell_size,self.window_size[1]*self.cell_size))
            x=extract_hog_feature(x, cell_size=self.cell_size)
        elif self.features=='cn':
            x = cv2.resize(first_frame, (self.window_size[0] * self.cell_size, self.window_size[1] * self.cell_size))
            x=extract_cn_feature(x,self.cell_size)
        else:
            raise NotImplementedError

        self.xf = fft2(self._get_windowed(x, self._window))
        self.init_response_center = (0,0)
        self.alphaf = self._training(self.xf,self.yf)
Exemplo n.º 2
0
    def init(self, first_frame, bbox):
        assert len(first_frame.shape) == 3 and first_frame.shape[2] == 3
        bbox = np.array(bbox).astype(np.int64)
        x0, y0, w, h = tuple(bbox)
        if w * h >= 100**2:
            self.resize = True
            x0, y0, w, h = x0 / 2, y0 / 2, w / 2, h / 2
            first_frame = cv2.resize(first_frame, dsize=None, fx=0.5,
                                     fy=0.5).astype(np.uint8)

        self.crop_size = (int(np.floor(w * (1 + self.padding))),
                          int(np.floor(h * (1 + self.padding))))  # for vis
        self._center = (x0 + w / 2, y0 + h / 2)
        self.w, self.h = w, h
        self.window_size = (int(np.floor(w * (1 + self.padding))) //
                            self.cell_size,
                            int(np.floor(h * (1 + self.padding))) //
                            self.cell_size)
        self._window = cos_window(self.window_size)

        s = np.sqrt(w * h) * self.output_sigma_factor / self.cell_size
        self.yf = fft2(gaussian2d_rolled_labels(self.window_size, s))

        self.search_size = np.linspace(0.985, 1.015, 7)

        self.target_sz = (w, h)
        #param0=[self._center[0],self._center[1],1,
        #        0,1/(self.crop_size[1]/self.crop_size[0]),
        #        0]
        #param0=self.affparam2mat(param0)
        #patch=self.warpimg(first_frame.astype(np.float32),param0,self.crop_size).astype(np.uint8)
        patch = cv2.getRectSubPix(first_frame, self.crop_size, self._center)
        patch = cv2.resize(patch, dsize=self.crop_size)
        hc_features = self.get_features(patch, self.cell_size)
        hc_features = hc_features * self._window[:, :, None]
        xf = fft2(hc_features)
        kf = self._kernel_correlation(xf, xf, kernel=self.kernel)
        self.model_alphaf = self.yf / (kf + self.lambda_)
        self.model_xf = xf
Exemplo n.º 3
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x, y, w, h = tuple(bbox)
        self.init_mask = np.ones((h, w), dtype=np.uint8)
        self._center = (x + w / 2, y + h / 2)
        self.w, self.h = w, h
        if np.all(first_frame[:, :, 0] == first_frame[:, :, 1]):
            self.use_segmentation = False
        # change 400 to 300
        # for larger cell_size
        self.cell_size = int(min(4, max(1, w * h / 300)))
        self.base_target_sz = (w, h)

        template_size = (int(w + self.padding * np.sqrt(w * h)),
                         int(h + self.padding * np.sqrt(w * h)))
        template_size = (template_size[0] + template_size[1]) // 2
        self.template_size = (template_size, template_size)

        self.rescale_ratio = np.sqrt(
            (200**2) / (self.template_size[0] * self.template_size[1]))
        self.rescale_ratio = np.clip(self.rescale_ratio, a_min=None, a_max=1)

        self.rescale_template_size = (int(self.rescale_ratio *
                                          self.template_size[0]),
                                      int(self.rescale_ratio *
                                          self.template_size[1]))
        self.yf = fft2(
            gaussian2d_rolled_labels(
                (int(self.rescale_template_size[0] / self.cell_size),
                 int(self.rescale_template_size[1] / self.cell_size)),
                self.y_sigma))

        self._window = cos_window((self.yf.shape[1], self.yf.shape[0]))
        self.crop_size = self.rescale_template_size

        # create dummy  mask (approximation for segmentation)
        # size of the object in feature space
        obj_sz = (int(self.rescale_ratio *
                      (self.base_target_sz[0] / self.cell_size)),
                  int(self.rescale_ratio *
                      (self.base_target_sz[1] / self.cell_size)))
        x0 = int((self.yf.shape[1] - obj_sz[0]) / 2)
        y0 = int((self.yf.shape[0] - obj_sz[1]) / 2)
        x1 = x0 + obj_sz[0]
        y1 = y0 + obj_sz[1]
        self.target_dummy_mask = np.zeros_like(self.yf, dtype=np.uint8)
        self.target_dummy_mask[y0:y1, x0:x1] = 1
        self.target_dummy_area = np.sum(self.target_dummy_mask)
        if self.use_segmentation:
            if self.segcolor_space == 'bgr':
                seg_img = first_frame
            elif self.segcolor_space == 'hsv':
                seg_img = cv2.cvtColor(first_frame, cv2.COLOR_BGR2HSV)
                seg_img[:, :,
                        0] = (seg_img[:, :, 0].astype(np.float32) / 180 * 255)
                seg_img = seg_img.astype(np.uint8)
            else:
                raise ValueError
            hist_fg = Histogram(3, self.nbins)
            hist_bg = Histogram(3, self.nbins)
            self.extract_histograms(seg_img, bbox, hist_fg, hist_bg)

            mask = self.segment_region(seg_img, self._center,
                                       self.template_size, self.base_target_sz,
                                       self.sc, hist_fg, hist_bg)
            self.hist_bg_p_bins = hist_bg.p_bins
            self.hist_fg_p_bins = hist_fg.p_bins

            init_mask_padded = np.zeros_like(mask)
            pm_x0 = int(np.floor(mask.shape[1] / 2 - bbox[2] / 2))
            pm_y0 = int(np.floor(mask.shape[0] / 2 - bbox[3] / 2))
            init_mask_padded[pm_y0:pm_y0 + bbox[3], pm_x0:pm_x0 + bbox[2]] = 1
            mask = mask * init_mask_padded
            mask = cv2.resize(mask, (self.yf.shape[1], self.yf.shape[0]))
            if self.mask_normal(mask, self.target_dummy_area) is True:
                kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3),
                                                   anchor=(1, 1))
                mask = cv2.dilate(mask, kernel)
            else:
                mask = self.target_dummy_mask
        else:
            mask = self.target_dummy_mask
        # extract features
        f = self.get_csr_features(first_frame, self._center, self.sc,
                                  self.template_size,
                                  self.rescale_template_size, self.cell_size)
        f = f * self._window[:, :, None]
        # create filters using segmentation mask
        self.H = self.create_csr_filter(f, self.yf, mask)
        response = np.real(ifft2(fft2(f) * np.conj(self.H)))
        chann_w = np.max(response.reshape(
            response.shape[0] * response.shape[1], -1),
                         axis=0)
        self.chann_w = chann_w / np.sum(chann_w)

        avg_dim = (w + h) / 2.5
        self.scale_sz = ((w + avg_dim) / self.sc, (h + avg_dim) / self.sc)
        self.scale_sz0 = self.scale_sz
        self.cos_window_scale = cos_window(
            (self.scale_sz_window[0], self.scale_sz_window[1]))
        self.mag = self.cos_window_scale.shape[0] / np.log(
            np.sqrt((self.cos_window_scale.shape[0]**2 +
                     self.cos_window_scale.shape[1]**2) / 4))

        # scale lp
        patchL = cv2.getRectSubPix(first_frame,
                                   (int(np.floor(self.sc * self.scale_sz[0])),
                                    int(np.floor(self.sc * self.scale_sz[1]))),
                                   self._center)
        patchL = cv2.resize(patchL, self.scale_sz_window)
        patchLp = cv2.logPolar(patchL.astype(np.float32),
                               ((patchL.shape[1] - 1) / 2,
                                (patchL.shape[0] - 1) / 2),
                               self.mag,
                               flags=cv2.INTER_LINEAR + cv2.WARP_FILL_OUTLIERS)

        self.model_patchLp = extract_hog_feature(patchLp, cell_size=4)
Exemplo n.º 4
0
    def init(self, first_frame, bbox):
        bbox = np.array(bbox).astype(np.int64)
        x, y, w, h = tuple(bbox)
        self._center = (x + w / 2, y + h / 2)
        self.w, self.h = w, h
        self.feature_ratio = self.cell_size
        self.search_area=(self.w/self.feature_ratio*self.search_area_scale)*\
                         (self.h/self.feature_ratio*self.search_area_scale)
        if self.search_area < self.cell_selection_thresh * self.filter_max_area:
            self.cell_size=int(min(self.feature_ratio,max(1,int(np.ceil(np.sqrt(
                self.w*self.search_area_scale/(self.cell_selection_thresh*self.filter_max_area)*\
                self.h*self.search_area_scale/(self.cell_selection_thresh*self.filter_max_area)
            ))))))
            self.feature_ratio = self.cell_size
            self.search_area = (self.w / self.feature_ratio * self.search_area_scale) * \
                               (self.h / self.feature_ratio * self.search_area_scale)

        if self.search_area > self.filter_max_area:
            self.current_scale_factor = np.sqrt(self.search_area /
                                                self.filter_max_area)
        else:
            self.current_scale_factor = 1.

        self.base_target_sz = (self.w / self.current_scale_factor,
                               self.h / self.current_scale_factor)
        self.target_sz = self.base_target_sz
        if self.search_area_shape == 'proportional':
            self.crop_size = (int(self.base_target_sz[0] *
                                  self.search_area_scale),
                              int(self.base_target_sz[1] *
                                  self.search_area_scale))
        elif self.search_area_shape == 'square':
            w = int(
                np.sqrt(self.base_target_sz[0] * self.base_target_sz[1]) *
                self.search_area_scale)
            self.crop_size = (w, w)
        elif self.search_area_shape == 'fix_padding':
            tmp=int(np.sqrt(self.base_target_sz[0]*self.search_area_scale+(self.base_target_sz[1]-self.base_target_sz[0])/4))+\
                (self.base_target_sz[0]+self.base_target_sz[1])/2
            self.crop_size = (self.base_target_sz[0] + tmp,
                              self.base_target_sz[1] + tmp)
        else:
            raise ValueError
        self.crop_size = (int(
            round(self.crop_size[0] / self.feature_ratio) *
            self.feature_ratio),
                          int(
                              round(self.crop_size[1] / self.feature_ratio) *
                              self.feature_ratio))
        self.feature_map_sz = (self.crop_size[0] // self.feature_ratio,
                               self.crop_size[1] // self.feature_ratio)
        output_sigma = np.sqrt(
            np.floor(self.base_target_sz[0] / self.feature_ratio) *
            np.floor(self.base_target_sz[1] /
                     self.feature_ratio)) * self.output_sigma_factor
        y = gaussian2d_rolled_labels(self.feature_map_sz, output_sigma)
        self.yf = fft2(y)
        if self.interpolate_response == 1:
            self.interp_sz = (self.feature_map_sz[0] * self.feature_ratio,
                              self.feature_map_sz[1] * self.feature_ratio)
        else:
            self.interp_sz = (self.feature_map_sz[0], self.feature_map_sz[1])
        self._window = cos_window(self.feature_map_sz)
        if self.number_of_scales > 0:
            scale_exp = np.arange(
                -int(np.floor((self.number_of_scales - 1) / 2)),
                int(np.ceil((self.number_of_scales - 1) / 2)) + 1)
            self.scale_factors = self.scale_step**scale_exp
            self.min_scale_factor = self.scale_step**(np.ceil(
                np.log(max(5 / self.crop_size[0], 5 / self.crop_size[1])) /
                np.log(self.scale_step)))
            self.max_scale_factor = self.scale_step**(np.floor(
                np.log(
                    min(first_frame.shape[0] / self.base_target_sz[1],
                        first_frame.shape[1] / self.base_target_sz[0])) /
                np.log(self.scale_step)))
        if self.interpolate_response >= 3:
            self.ky = np.roll(
                np.arange(-int(np.floor((self.feature_map_sz[1] - 1) / 2)),
                          int(np.ceil((self.feature_map_sz[1] - 1) / 2 + 1))),
                -int(np.floor((self.feature_map_sz[1] - 1) / 2)))
            self.kx = np.roll(
                np.arange(-int(np.floor((self.feature_map_sz[0] - 1) / 2)),
                          int(np.ceil((self.feature_map_sz[0] - 1) / 2 + 1))),
                -int(np.floor((self.feature_map_sz[0] - 1) / 2))).T

        self.small_filter_sz = (int(
            np.floor(self.base_target_sz[0] / self.feature_ratio)),
                                int(
                                    np.floor(self.base_target_sz[1] /
                                             self.feature_ratio)))

        self.scale_estimator = LPScaleEstimator(self.target_sz,
                                                config=self.scale_config)
        self.scale_estimator.init(first_frame, self._center,
                                  self.base_target_sz,
                                  self.current_scale_factor)

        pixels = self.get_sub_window(
            first_frame,
            self._center,
            model_sz=self.crop_size,
            scaled_sz=(int(
                np.round(self.crop_size[0] * self.current_scale_factor)),
                       int(
                           np.round(self.crop_size[1] *
                                    self.current_scale_factor))))
        feature = self.extract_hc_feture(pixels, cell_size=self.feature_ratio)
        self.model_xf = fft2(self._window[:, :, None] * feature)

        self.g_f = self.ADMM(self.model_xf)
Exemplo n.º 5
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x0, y0, w, h = tuple(bbox)
        self.target_sz = (w, h)
        self._center = (int(x0 + w / 2), int(y0 + h / 2))
        self.base_target_sz = (w / self.sc, h / self.sc)
        self.win_sz = (int(
            np.floor(self.base_target_sz[0] * (1 + self.padding))),
                       int(
                           np.floor(self.base_target_sz[1] *
                                    (1 + self.padding))))

        output_sigma = np.sqrt(
            self.base_target_sz[0] *
            self.base_target_sz[1]) * self.output_sigma_factor / self.cell_size
        use_sz = (int(np.floor(self.win_sz[0] / self.cell_size)),
                  int(np.floor(self.win_sz[1] / self.cell_size)))

        self.yf = fft2(0.5 *
                       gaussian2d_rolled_labels(use_sz, sigma=output_sigma))
        self.interp_sz = (use_sz[0] * self.cell_size,
                          use_sz[1] * self.cell_size)
        self._window = cos_window(use_sz)

        avg_dim = (w + h) / 2.5
        self.scale_sz = ((w + avg_dim) / self.sc, (h + avg_dim) / self.sc)
        self.scale_sz0 = self.scale_sz
        self.cos_window_scale = cos_window(
            (self.scale_sz_window[0], self.scale_sz_window[1]))
        self.mag = self.cos_window_scale.shape[0] / np.log(
            np.sqrt((self.cos_window_scale.shape[0]**2 +
                     self.cos_window_scale.shape[1]**2) / 4))

        # scale lp
        patchL = cv2.getRectSubPix(first_frame,
                                   (int(np.floor(self.sc * self.scale_sz[0])),
                                    int(np.floor(self.sc * self.scale_sz[1]))),
                                   self._center)
        patchL = cv2.resize(patchL, self.scale_sz_window)
        patchLp = cv2.logPolar(patchL.astype(np.float32),
                               ((patchL.shape[1] - 1) / 2,
                                (patchL.shape[0] - 1) / 2),
                               self.mag,
                               flags=cv2.INTER_LINEAR + cv2.WARP_FILL_OUTLIERS)
        self.model_patchLp = extract_hog_feature(patchLp, cell_size=4)

        self.cn_sigma = self.cn_sigma_color
        self.hog_sigma = self.hog_sigma_color
        self.lr_hog = self.lr_hog_color
        self.lr_cn = self.lr_cn_color
        self.modnum = self.gap
        self.is_gray = False

        patch = cv2.getRectSubPix(first_frame, self.win_sz,
                                  self._center).astype(np.uint8)
        self.z_hog, self.z_cn = self.get_features(patch,
                                                  cell_size=self.cell_size)

        data_matrix_cn = self.z_cn.reshape((-1, self.z_cn.shape[2]))
        pca_basis_cn, _, _ = np.linalg.svd(
            data_matrix_cn.T.dot(data_matrix_cn))
        self.projection_matrix_cn = pca_basis_cn[:, :self.
                                                 num_compressed_dim_cn]
        data_matrix_hog = self.z_hog.reshape((-1, self.z_hog.shape[2]))
        pca_basis_hog, _, _ = np.linalg.svd(
            data_matrix_hog.T.dot(data_matrix_hog))
        self.projection_matrix_hog = pca_basis_hog[:, :self.
                                                   num_compressed_dim_hog]

        self.z_cn2, self.z_hog2 = self.feature_projection(
            self.z_cn, self.z_hog, self.projection_matrix_cn,
            self.projection_matrix_hog, self._window)
        self.frame_index = 1
        self.d = self.train_model()
Exemplo n.º 6
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x0, y0, w, h = tuple(bbox)
        self.target_sz = (w, h)
        self._center = (int(x0 + w / 2), int(y0 + h / 2))
        if w * h > self.translation_model_max_area:
            self.sc = np.sqrt(w * h / self.translation_model_max_area)
        else:
            self.sc = 1.
        self.base_target_sz = (w / self.sc, h / self.sc)
        self.win_sz = (int(
            np.floor(self.base_target_sz[0] * (1 + self.padding))),
                       int(
                           np.floor(self.base_target_sz[1] *
                                    (1 + self.padding))))

        output_sigma = np.sqrt(
            self.base_target_sz[0] *
            self.base_target_sz[1]) * self.output_sigma_factor / self.cell_size
        use_sz = (int(np.floor(self.win_sz[0] / self.cell_size)),
                  int(np.floor(self.win_sz[1] / self.cell_size)))

        self.yf = fft2(0.5 *
                       gaussian2d_rolled_labels(use_sz, sigma=output_sigma))
        self.interp_sz = (use_sz[0] * self.cell_size,
                          use_sz[1] * self.cell_size)
        self._window = cos_window(use_sz)

        if self.num_of_scales > 0:
            self.scale_sigma = self.num_of_interp_scales * self.scale_sigma_factor
            scale_exp = np.arange(
                -int(np.floor((self.num_of_scales - 1) / 2)),
                int(np.ceil((self.num_of_scales - 1) / 2)) +
                1) * self.num_of_interp_scales / self.num_of_scales
            scale_exp_shift = np.roll(
                scale_exp, -int(np.floor((self.num_of_scales - 1) / 2)))
            interp_scale_exp = np.arange(
                -int(np.floor((self.num_of_interp_scales - 1) / 2)),
                int(np.ceil((self.num_of_interp_scales - 1) / 2)) + 1)
            interp_scale_exp_shift = np.roll(
                interp_scale_exp,
                -int(np.floor((self.num_of_interp_scales - 1) / 2)))
            self.scale_size_factors = self.scale_step**scale_exp
            self.interp_scale_factors = self.scale_step**interp_scale_exp_shift

            ys = np.exp(-0.5 * (scale_exp_shift**2) / (self.scale_sigma**2))
            self.ysf = np.fft.fft(ys)
            self.scale_window = np.hanning(len(self.ysf)).T

            if self.scale_model_factor**2 * (
                    self.base_target_sz[0] *
                    self.base_target_sz[1]) > self.scale_model_max_area:
                self.scale_model_factor = np.sqrt(
                    self.scale_model_max_area /
                    (self.base_target_sz[0] * self.base_target_sz[1]))

            self.scale_model_sz = (int(
                np.floor(self.base_target_sz[0] * self.scale_model_factor)),
                                   int(
                                       np.floor(self.base_target_sz[1] *
                                                self.scale_model_factor)))

            self.min_scale_factor = self.scale_step**(int(
                np.ceil(
                    np.log(max(5 / self.win_sz[0], 5 / self.win_sz[1])) /
                    np.log(self.scale_step))))
            self.max_scale_factor = self.scale_step**(int(
                np.floor((np.log(
                    min(first_frame.shape[1] / self.base_target_sz[0],
                        first_frame.shape[0] / self.base_target_sz[1])) /
                          np.log(self.scale_step)))))

            self.s_num_compressed_dim = len(self.scale_size_factors)
            xs = self.get_scale_subwindow(first_frame, self._center)

            bigY = xs
            bigY_den = xs
            self.s_num = xs
            scale_basis, _ = np.linalg.qr(bigY)
            scale_basis_den, _ = np.linalg.qr(bigY_den)
            self.scale_basis = scale_basis.T
            self.scale_basis_den = scale_basis_den.T
            sf_proj = np.fft.fft(self.scale_window *
                                 self.scale_basis.dot(self.s_num),
                                 axis=1)
            self.sf_num = self.ysf * np.conj(sf_proj)
            xs = self.scale_basis_den.dot(xs)
            xsf = np.fft.fft(xs, axis=1)
            new_sf_den = np.sum(xsf * np.conj(xsf), axis=0)
            self.sf_den = new_sf_den

        self.cn_sigma = self.cn_sigma_color
        self.hog_sigma = self.hog_sigma_color
        self.lr_hog = self.lr_hog_color
        self.lr_cn = self.lr_cn_color
        self.modnum = self.gap
        self.is_gray = False

        patch = cv2.getRectSubPix(first_frame, self.win_sz,
                                  self._center).astype(np.uint8)
        self.z_hog, self.z_cn = self.get_features(patch,
                                                  cell_size=self.cell_size)

        data_matrix_cn = self.z_cn.reshape((-1, self.z_cn.shape[2]))
        pca_basis_cn, _, _ = np.linalg.svd(
            data_matrix_cn.T.dot(data_matrix_cn))
        self.projection_matrix_cn = pca_basis_cn[:, :self.
                                                 num_compressed_dim_cn]

        data_matrix_hog = self.z_hog.reshape((-1, self.z_hog.shape[2]))
        pca_basis_hog, _, _ = np.linalg.svd(
            data_matrix_hog.T.dot(data_matrix_hog))
        self.projection_matrix_hog = pca_basis_hog[:, :self.
                                                   num_compressed_dim_hog]

        self.z_cn2, self.z_hog2 = self.feature_projection(
            self.z_cn, self.z_hog, self.projection_matrix_cn,
            self.projection_matrix_hog, self._window)
        self.frame_index = 1
        self.d = self.train_model()
Exemplo n.º 7
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x, y, w, h = tuple(bbox)
        self.init_mask = np.ones((h, w), dtype=np.uint8)
        self._center = (x + w / 2, y + h / 2)
        self.w, self.h = w, h
        if np.all(first_frame[:, :, 0] == first_frame[:, :, 1]):
            self.use_segmentation = False
        # change 400 to 300
        # for larger cell_size
        self.cell_size = int(min(4, max(1, w * h / 300)))
        self.base_target_sz = (w, h)
        self.target_sz = self.base_target_sz

        template_size = (int(w + self.padding * np.sqrt(w * h)),
                         int(h + self.padding * np.sqrt(w * h)))
        template_size = (template_size[0] + template_size[1]) // 2
        self.template_size = (template_size, template_size)

        self.rescale_ratio = np.sqrt(
            (self.params['template_size']**2) /
            (self.template_size[0] * self.template_size[1]))
        self.rescale_ratio = np.clip(self.rescale_ratio, a_min=None, a_max=1)

        self.rescale_template_size = (int(self.rescale_ratio *
                                          self.template_size[0]),
                                      int(self.rescale_ratio *
                                          self.template_size[1]))
        self.yf = fft2(
            gaussian2d_rolled_labels(
                (int(self.rescale_template_size[0] / self.cell_size),
                 int(self.rescale_template_size[1] / self.cell_size)),
                self.y_sigma))

        self._window = cos_window((self.yf.shape[1], self.yf.shape[0]))
        self.crop_size = self.rescale_template_size

        self.current_scale_factor = 1.

        if self.scale_type == 'normal':
            self.scale_estimator = DSSTScaleEstimator(self.target_sz,
                                                      config=self.scale_config)
            self.scale_estimator.init(first_frame, self._center,
                                      self.base_target_sz,
                                      self.current_scale_factor)
            self._num_scales = self.scale_estimator.num_scales
            self._scale_step = self.scale_estimator.scale_step

            self._min_scale_factor = self._scale_step**np.ceil(
                np.log(
                    np.max(5 / np.array(
                        ([self.crop_size[0], self.crop_size[1]])))) /
                np.log(self._scale_step))
            self._max_scale_factor = self._scale_step**np.floor(
                np.log(
                    np.min(first_frame.shape[:2] / np.array(
                        [self.base_target_sz[1], self.base_target_sz[0]]))) /
                np.log(self._scale_step))
        elif self.scale_type == 'LP':
            self.scale_estimator = LPScaleEstimator(self.target_sz,
                                                    config=self.scale_config)
            self.scale_estimator.init(first_frame, self._center,
                                      self.base_target_sz,
                                      self.current_scale_factor)

        # create dummy  mask (approximation for segmentation)
        # size of the object in feature space
        obj_sz = (int(self.rescale_ratio *
                      (self.base_target_sz[0] / self.cell_size)),
                  int(self.rescale_ratio *
                      (self.base_target_sz[1] / self.cell_size)))
        x0 = int((self.yf.shape[1] - obj_sz[0]) / 2)
        y0 = int((self.yf.shape[0] - obj_sz[1]) / 2)
        x1 = x0 + obj_sz[0]
        y1 = y0 + obj_sz[1]
        self.target_dummy_mask = np.zeros_like(self.yf, dtype=np.uint8)
        self.target_dummy_mask[y0:y1, x0:x1] = 1
        self.target_dummy_area = np.sum(self.target_dummy_mask)
        if self.use_segmentation:
            if self.segcolor_space == 'bgr':
                seg_img = first_frame
            elif self.segcolor_space == 'hsv':
                seg_img = cv2.cvtColor(first_frame, cv2.COLOR_BGR2HSV)
                seg_img[:, :,
                        0] = (seg_img[:, :, 0].astype(np.float32) / 180 * 255)
                seg_img = seg_img.astype(np.uint8)
            else:
                raise ValueError
            hist_fg = Histogram(3, self.nbins)
            hist_bg = Histogram(3, self.nbins)
            self.extract_histograms(seg_img, bbox, hist_fg, hist_bg)

            mask = self.segment_region(seg_img, self._center,
                                       self.template_size, self.base_target_sz,
                                       self.current_scale_factor, hist_fg,
                                       hist_bg)
            self.hist_bg_p_bins = hist_bg.p_bins
            self.hist_fg_p_bins = hist_fg.p_bins

            init_mask_padded = np.zeros_like(mask)
            pm_x0 = int(np.floor(mask.shape[1] / 2 - bbox[2] / 2))
            pm_y0 = int(np.floor(mask.shape[0] / 2 - bbox[3] / 2))
            init_mask_padded[pm_y0:pm_y0 + bbox[3], pm_x0:pm_x0 + bbox[2]] = 1
            mask = mask * init_mask_padded
            mask = cv2.resize(mask, (self.yf.shape[1], self.yf.shape[0]))
            if self.mask_normal(mask, self.target_dummy_area) is True:
                kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3),
                                                   anchor=(1, 1))
                mask = cv2.dilate(mask, kernel)
            else:
                mask = self.target_dummy_mask
        else:
            mask = self.target_dummy_mask
        # extract features
        f = get_csr_features(first_frame, self._center,
                             self.current_scale_factor, self.template_size,
                             self.rescale_template_size, self.cell_size)
        f = f * self._window[:, :, None]
        # create filters using segmentation mask
        self.H = self.create_csr_filter(f, self.yf, mask)
        response = np.real(ifft2(fft2(f) * np.conj(self.H)))
        chann_w = np.max(response.reshape(
            response.shape[0] * response.shape[1], -1),
                         axis=0)
        self.chann_w = chann_w / np.sum(chann_w)

        # New: irrelevant channels!
        self.irrelevant_channels = []
        top_channels = self.params['top_channels']
        if top_channels:
            for chan_i, _ in sorted(enumerate(chann_w),
                                    reverse=True,
                                    key=lambda x: x[1])[top_channels:]:
                self.irrelevant_channels.append(chan_i)

        f = np.delete(f, self.irrelevant_channels, 2)
        # create filters using segmentation mask
        self.H = self.create_csr_filter(f, self.yf, mask)
        response = np.real(ifft2(fft2(f) * np.conj(self.H)))
        chann_w = np.max(response.reshape(
            response.shape[0] * response.shape[1], -1),
                         axis=0)
        self.chann_w = chann_w / np.sum(chann_w)
Exemplo n.º 8
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x0, y0, w, h = tuple(bbox)
        self._center = (int(x0 + w / 2), int(y0 + h / 2))
        self.target_sz = (w, h)

        search_area = self.target_sz[
            0] * self.search_area_scale * self.target_sz[
                1] * self.search_area_scale
        self.sc = np.clip(
            1,
            a_min=np.sqrt(search_area / self.max_image_sample_size),
            a_max=np.sqrt(search_area / self.min_image_sample_size))

        self.base_target_sz = (self.target_sz[0] / self.sc,
                               self.target_sz[1] / self.sc)

        if self.search_area_shape == 'proportional':
            self.crop_size = (int(self.base_target_sz[0] *
                                  self.search_area_scale),
                              int(self.base_target_sz[1] *
                                  self.search_area_scale))
        elif self.search_area_shape == 'square':
            w = int(
                np.sqrt(self.base_target_sz[0] * self.base_target_sz[1]) *
                self.search_area_scale)
            self.crop_size = (w, w)
        elif self.search_area_shape == 'fix_padding':
            tmp=int(np.sqrt(self.base_target_sz[0]*self.search_area_scale+(self.base_target_sz[1]-self.base_target_sz[0])/4))+\
                (self.base_target_sz[0]+self.base_target_sz[1])/2
            self.crop_size = (self.base_target_sz[0] + tmp,
                              self.base_target_sz[1] + tmp)
        else:
            raise ValueError
        output_sigma = np.sqrt(np.floor(self.base_target_sz[0]/self.cell_size)*np.floor(self.base_target_sz[1]*self.cell_size))*\
            self.output_sigma_factor

        self.crop_size = (int(
            round(self.crop_size[0] / self.cell_size) * self.cell_size),
                          int(
                              round(self.crop_size[1] / self.cell_size) *
                              self.cell_size))
        self.feature_map_sz = (self.crop_size[0] // self.cell_size,
                               self.crop_size[1] // self.cell_size)
        y = gaussian2d_rolled_labels(self.feature_map_sz, output_sigma)

        self.cosine_window = (cos_window((y.shape[1], y.shape[0])))
        self.yf = fft2(y)
        reg_scale = (int(
            np.floor(self.base_target_sz[0] / self.feature_downsample_ratio)),
                     int(
                         np.floor(self.base_target_sz[1] /
                                  self.feature_downsample_ratio)))
        use_sz = self.feature_map_sz

        #self.reg_window=self.create_reg_window(reg_scale,use_sz,self.p,self.reg_window_max,
        #                                      self.reg_window_min,self.alpha,self.beta)
        self.reg_window = self.create_reg_window_const(reg_scale, use_sz,
                                                       self.reg_window_max,
                                                       self.reg_window_min)

        self.ky = np.roll(
            np.arange(-int(np.floor((self.feature_map_sz[1] - 1) / 2)),
                      int(np.ceil((self.feature_map_sz[1] - 1) / 2 + 1))),
            -int(np.floor((self.feature_map_sz[1] - 1) / 2)))
        self.kx = np.roll(
            np.arange(-int(np.floor((self.feature_map_sz[0] - 1) / 2)),
                      int(np.ceil((self.feature_map_sz[0] - 1) / 2 + 1))),
            -int(np.floor((self.feature_map_sz[0] - 1) / 2)))

        # scale
        scale_exp = np.arange(
            -int(np.floor((self.number_of_scales - 1) / 2)),
            int(np.ceil((self.number_of_scales - 1) / 2) + 1))

        self.scale_factors = self.scale_step**scale_exp

        if self.number_of_scales > 0:
            self._min_scale_factor = self.scale_step**np.ceil(
                np.log(
                    np.max(5 / np.array(
                        ([self.crop_size[0], self.crop_size[1]])))) /
                np.log(self.scale_step))
            self._max_scale_factor = self.scale_step**np.floor(
                np.log(
                    np.min(first_frame.shape[:2] / np.array(
                        [self.base_target_sz[1], self.base_target_sz[0]]))) /
                np.log(self.scale_step))
            #print(self._min_scale_factor)
            #print(self._max_scale_factor)

        if self.scale_type == 'normal':
            self.scale_estimator = DSSTScaleEstimator(self.target_sz,
                                                      config=self.scale_config)
            self.scale_estimator.init(first_frame, self._center,
                                      self.base_target_sz, self.sc)
            self._num_scales = self.scale_estimator.num_scales
            self._scale_step = self.scale_estimator.scale_step

            self._min_scale_factor = self._scale_step**np.ceil(
                np.log(
                    np.max(5 / np.array(
                        ([self.crop_size[0], self.crop_size[1]])))) /
                np.log(self._scale_step))
            self._max_scale_factor = self._scale_step**np.floor(
                np.log(
                    np.min(first_frame.shape[:2] / np.array(
                        [self.base_target_sz[1], self.base_target_sz[0]]))) /
                np.log(self._scale_step))
        elif self.scale_type == 'LP':
            self.scale_estimator = LPScaleEstimator(self.target_sz,
                                                    config=self.scale_config)
            self.scale_estimator.init(first_frame, self._center,
                                      self.base_target_sz, self.sc)

        patch = self.get_sub_window(
            first_frame,
            self._center,
            model_sz=self.crop_size,
            scaled_sz=(int(np.round(self.crop_size[0] * self.sc)),
                       int(np.round(self.crop_size[1] * self.sc))))
        xl_hc = self.extrac_hc_feature(patch, self.cell_size)
        xlf_hc = fft2(xl_hc * self.cosine_window[:, :, None])
        f_pre_f_hc = np.zeros_like(xlf_hc)
        mu_hc = 0
        self.f_pre_f_hc = self.ADMM(xlf_hc, f_pre_f_hc, mu_hc)
Exemplo n.º 9
0
    def init(self, first_frame, bbox):
        bbox = np.array(bbox).astype(np.int64)
        x, y, w, h = tuple(bbox)
        self._center = (x + w / 2, y + h / 2)
        self.w, self.h = w, h
        self.feature_ratio = self.cell_size
        # 初始边框做为一个统计块,每个统计块包含4个细胞单元;查找区域在每个细胞单元*5 的范围内。     (w/4*5)*(h/4*5)
        self.search_area=(self.w/self.feature_ratio*self.search_area_scale)*\
                         (self.h/self.feature_ratio*self.search_area_scale)

        if self.search_area < self.cell_selection_thresh * self.filter_max_area:  # 搜索区域< 0.75*50的正方形
            # 新的统计块包含细胞单元个数 min(4, max(1, w*5/(0.75**2*50**2)*h*5/(0.75**2*50**2)))
            self.cell_size = int(
                min(
                    self.feature_ratio,
                    max(
                        1,
                        int(
                            np.ceil(
                                np.sqrt(self.w * self.search_area_scale /
                                        (self.cell_selection_thresh *
                                         self.filter_max_area) * self.h *
                                        self.search_area_scale /
                                        (self.cell_selection_thresh *
                                         self.filter_max_area)))))))
            self.feature_ratio = self.cell_size
            self.search_area = (self.w / self.feature_ratio * self.search_area_scale) * \
                               (self.h / self.feature_ratio * self.search_area_scale)

        if self.search_area > self.filter_max_area:
            self.current_scale_factor = np.sqrt(self.search_area /
                                                self.filter_max_area)
        else:
            self.current_scale_factor = 1.

        # 当搜索区域> 最大区域时,cop 区域会变化,如下
        self.base_target_sz = (self.w / self.current_scale_factor,
                               self.h / self.current_scale_factor)
        self.target_sz = self.base_target_sz
        if self.search_area_shape == 'proportional':
            self.crop_size = (
                int(self.base_target_sz[0] * self.search_area_scale),
                int(self.base_target_sz[1] * self.search_area_scale)
            )  # crop_size:
        elif self.search_area_shape == 'square':  # crop 使用正方形时
            w = int(
                np.sqrt(self.base_target_sz[0] * self.base_target_sz[1]) *
                self.search_area_scale)
            self.crop_size = (w, w)
        elif self.search_area_shape == 'fix_padding':
            # tmp = sqrt(w*5+(h-w)/4)+(w+h)/2
            tmp=int(np.sqrt(self.base_target_sz[0]*self.search_area_scale+(self.base_target_sz[1]-self.base_target_sz[0])/4))+\
                (self.base_target_sz[0]+self.base_target_sz[1])/2
            self.crop_size = (self.base_target_sz[0] + tmp,
                              self.base_target_sz[1] + tmp)
        else:
            raise ValueError
        self.crop_size = (int(
            round(self.crop_size[0] / self.feature_ratio) *
            self.feature_ratio),
                          int(
                              round(self.crop_size[1] / self.feature_ratio) *
                              self.feature_ratio))
        # frature_map = (crop_w//cell_num, crop_h//cell_num)
        self.feature_map_sz = (self.crop_size[0] // self.feature_ratio,
                               self.crop_size[1] // self.feature_ratio)
        # output_sigma = crop 中细胞元的大小/16
        output_sigma = np.sqrt(
            np.floor(self.base_target_sz[0] / self.feature_ratio) *
            np.floor(self.base_target_sz[1] /
                     self.feature_ratio)) * self.output_sigma_factor  #  ????`
        # 高斯窗,避免图像转化为傅里叶信号时造成频谱泄露现象;也会改变频谱幅值
        y = gaussian2d_rolled_labels(self.feature_map_sz, output_sigma)
        # 傅里叶变换
        self.yf = fft2(y)
        if self.interpolate_response == 1:
            self.interp_sz = (self.feature_map_sz[0] * self.feature_ratio,
                              self.feature_map_sz[1] * self.feature_ratio)
        else:
            self.interp_sz = (self.feature_map_sz[0], self.feature_map_sz[1])
        self._window = cos_window(self.feature_map_sz)
        if self.number_of_scales > 0:
            scale_exp = np.arange(
                -int(np.floor((self.number_of_scales - 1) / 2)),
                int(np.ceil((self.number_of_scales - 1) / 2)) + 1)
            self.scale_factors = self.scale_step**scale_exp
            self.min_scale_factor = self.scale_step**(np.ceil(
                np.log(max(5 / self.crop_size[0], 5 / self.crop_size[1])) /
                np.log(self.scale_step)))
            self.max_scale_factor = self.scale_step**(np.floor(
                np.log(
                    min(first_frame.shape[0] / self.base_target_sz[1],
                        first_frame.shape[1] / self.base_target_sz[0])) /
                np.log(self.scale_step)))
        if self.interpolate_response >= 3:
            self.ky = np.roll(
                np.arange(-int(np.floor((self.feature_map_sz[1] - 1) / 2)),
                          int(np.ceil((self.feature_map_sz[1] - 1) / 2 + 1))),
                -int(np.floor((self.feature_map_sz[1] - 1) / 2)))
            self.kx = np.roll(
                np.arange(-int(np.floor((self.feature_map_sz[0] - 1) / 2)),
                          int(np.ceil((self.feature_map_sz[0] - 1) / 2 + 1))),
                -int(np.floor((self.feature_map_sz[0] - 1) / 2))).T

        self.small_filter_sz = (int(
            np.floor(self.base_target_sz[0] / self.feature_ratio)),
                                int(
                                    np.floor(self.base_target_sz[1] /
                                             self.feature_ratio)))

        self.scale_estimator = LPScaleEstimator(self.target_sz,
                                                config=self.scale_config)
        self.scale_estimator.init(first_frame, self._center,
                                  self.base_target_sz,
                                  self.current_scale_factor)

        pixels = self.get_sub_window(
            first_frame,
            self._center,
            model_sz=self.crop_size,
            scaled_sz=(int(
                np.round(self.crop_size[0] * self.current_scale_factor)),
                       int(
                           np.round(self.crop_size[1] *
                                    self.current_scale_factor))))
        feature = self.extract_hc_feture(pixels, cell_size=self.feature_ratio)
        self.model_xf = fft2(self._window[:, :, None] * feature)

        self.g_f = self.ADMM(self.model_xf)
Exemplo n.º 10
0
    def init(self, first_frame, bbox):

        bbox = np.array(bbox).astype(np.int64)
        x, y, w, h = tuple(bbox)
        self.init_mask = np.ones((h, w), dtype=np.uint8)
        self._center = (x + w / 2, y + h / 2)
        self.w, self.h = w, h
        if np.all(first_frame[:, :, 0] == first_frame[:, :, 1]):
            self.use_segmentation = False
        # change 400 to 300
        # for larger cell_size
        self.cell_size = int(min(4, max(1, w * h / 300)))
        self.base_target_sz = (w, h)

        template_size = (int(w + self.padding * np.sqrt(w * h)),
                         int(h + self.padding * np.sqrt(w * h)))
        template_size = (template_size[0] + template_size[1]) // 2
        self.template_size = (template_size, template_size)

        self.rescale_ratio = np.sqrt(
            (200**2) / (self.template_size[0] * self.template_size[1]))
        self.rescale_ratio = np.clip(self.rescale_ratio, a_min=None, a_max=1)

        self.rescale_template_size = (int(self.rescale_ratio *
                                          self.template_size[0]),
                                      int(self.rescale_ratio *
                                          self.template_size[1]))
        self.yf = fft2(
            gaussian2d_rolled_labels(
                (int(self.rescale_template_size[0] / self.cell_size),
                 int(self.rescale_template_size[1] / self.cell_size)),
                self.y_sigma))

        self._window = cos_window((self.yf.shape[1], self.yf.shape[0]))
        self.crop_size = self.rescale_template_size

        # the same as DSST
        self.scale_sigma = np.sqrt(self.n_scales) * self.scale_sigma_factor
        ss = np.arange(1, self.n_scales + 1) - np.ceil(self.n_scales / 2)
        ys = np.exp(-0.5 * (ss**2) / (self.scale_sigma**2))
        self.ysf = np.fft.fft(ys)

        if self.n_scales % 2 == 0:
            scale_window = np.hanning(self.n_scales + 1)
            self.scale_window = scale_window[1:]
        else:
            self.scale_window = np.hanning(self.n_scales)
        ss = np.arange(1, self.n_scales + 1)
        self.scale_factors = self.scale_step**(np.ceil(self.n_scales / 2) - ss)

        self.scale_model_factor = 1.
        if (self.scale_model_factor**2*self.template_size[0]*self.template_size[1]) >\
                self.scale_model_max_area:
            self.scale_model_factor = np.sqrt(
                self.scale_model_max_area /
                (self.template_size[0] * self.template_size[1]))

        self.scale_model_sz = (int(
            np.floor(self.template_size[0] * self.scale_model_factor)),
                               int(
                                   np.floor(self.template_size[1] *
                                            self.scale_model_factor)))

        self.current_scale_factor = 1.

        self.min_scale_factor = self.scale_step**(int(
            np.ceil(
                np.log(
                    max(5 / self.template_size[0], 5 / self.template_size[1]))
                / np.log(self.scale_step))))
        self.max_scale_factor = self.scale_step**(int(
            np.floor((np.log(
                min(first_frame.shape[1] / self.base_target_sz[0],
                    first_frame.shape[0] / self.base_target_sz[1])) /
                      np.log(self.scale_step)))))

        # create dummy  mask (approximation for segmentation)
        # size of the object in feature space
        obj_sz = (int(self.rescale_ratio *
                      (self.base_target_sz[0] / self.cell_size)),
                  int(self.rescale_ratio *
                      (self.base_target_sz[1] / self.cell_size)))
        x0 = int((self.yf.shape[1] - obj_sz[0]) / 2)
        y0 = int((self.yf.shape[0] - obj_sz[1]) / 2)
        x1 = x0 + obj_sz[0]
        y1 = y0 + obj_sz[1]
        self.target_dummy_mask = np.zeros_like(self.yf, dtype=np.uint8)
        self.target_dummy_mask[y0:y1, x0:x1] = 1
        self.target_dummy_area = np.sum(self.target_dummy_mask)
        if self.use_segmentation:
            if self.segcolor_space == 'bgr':
                seg_img = first_frame
            elif self.segcolor_space == 'hsv':
                seg_img = cv2.cvtColor(first_frame, cv2.COLOR_BGR2HSV)
                seg_img[:, :,
                        0] = (seg_img[:, :, 0].astype(np.float32) / 180 * 255)
                seg_img = seg_img.astype(np.uint8)
            else:
                raise ValueError
            hist_fg = Histogram(3, self.nbins)
            hist_bg = Histogram(3, self.nbins)
            self.extract_histograms(seg_img, bbox, hist_fg, hist_bg)

            mask = self.segment_region(seg_img, self._center,
                                       self.template_size, self.base_target_sz,
                                       self.current_scale_factor, hist_fg,
                                       hist_bg)
            self.hist_bg_p_bins = hist_bg.p_bins
            self.hist_fg_p_bins = hist_fg.p_bins

            init_mask_padded = np.zeros_like(mask)
            pm_x0 = int(np.floor(mask.shape[1] / 2 - bbox[2] / 2))
            pm_y0 = int(np.floor(mask.shape[0] / 2 - bbox[3] / 2))
            init_mask_padded[pm_y0:pm_y0 + bbox[3], pm_x0:pm_x0 + bbox[2]] = 1
            mask = mask * init_mask_padded
            mask = cv2.resize(mask, (self.yf.shape[1], self.yf.shape[0]))
            if self.mask_normal(mask, self.target_dummy_area) is True:
                kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3),
                                                   anchor=(1, 1))
                mask = cv2.dilate(mask, kernel)
            else:
                mask = self.target_dummy_mask
        else:
            mask = self.target_dummy_mask
        # extract features
        f = self.get_csr_features(first_frame, self._center,
                                  self.current_scale_factor,
                                  self.template_size,
                                  self.rescale_template_size, self.cell_size)
        f = f * self._window[:, :, None]
        # create filters using segmentation mask
        self.H = self.create_csr_filter(f, self.yf, mask)
        response = np.real(ifft2(fft2(f) * np.conj(self.H)))
        chann_w = np.max(response.reshape(
            response.shape[0] * response.shape[1], -1),
                         axis=0)
        self.chann_w = chann_w / np.sum(chann_w)

        # mask a scale search model as well
        xs = self.get_scale_sample(
            first_frame, self._center, self.base_target_sz,
            self.current_scale_factor * self.scale_factors, self.scale_window,
            self.scale_model_sz)
        xsf = np.fft.fft(xs, axis=1)
        self.sf_num = self.ysf * np.conj(xsf)
        self.sf_den = np.sum(xsf * np.conj(xsf), axis=0)