def drawSamples(drawing, data, width=600, height=400, show_progress=False): size = len(data) grain = width / size path = Path( stroke_width=1, stroke='black', fill='black', fill_opacity=0.0, ) path.M(0, height / 2) for i, d in enumerate(data): x = i * grain y = d * height * 0.5 + height * 0.5 path.L(x, y) if show_progress: progress(i, size) drawing.append(path) return drawing
N = blocksize T = 1.0 / blocksize * 1.25 for n, b in enumerate(audio_chunks(data, blocksize)): img = np.zeros((args.height, args.width, 3), np.uint8) if args.multichannel and meta.channels > 1: reflect = [(1, 1), (-1, 1), (1, -1), (-1, -1)] for i in range(meta.channels - 1): img = render_frame(img, spectrum(b.T[i], N), threshold=args.threshold, thickness=args.thickness, spread=args.spread or rms(b.T[i]) * 4, width=args.width, height=args.height) else: if meta.channels > 1: b = b.T[0] img = render_frame(img, spectrum(b, N), threshold=args.threshold, thickness=args.thickness, spread=args.spread or rms(b) * 4, width=args.width, height=args.height) cv2.imwrite(os.path.join(args.outdir, '{0:05d}.png'.format(n + 1)), img) progress(n, blocks) sys.stdout.write("\n")
console("info", "connecting to MQTT broker...") sleep(2) client.loop_start() # Open camera resolution = (1024, 768) vs = VideoStream( \ usePiCamera = True, \ resolution = resolution, \ framerate = 2 \ ).start() console("info", "Opening Camera...") startProgress("Opening Camera") for _ in range(10): sleep(1) progress(10 * _) endProgress() sleep(1) # Capture frames console("info", "Capturing frames") cnt = 0 while True: sys.stdout.flush() sys.stdout.write("\r[+] frame %d" % cnt) cnt += 1 frame = imutils.resize(vs.read(), width=newwidth, height=newheight) # print(frame) retval, buffer = cv2.imencode('.jpg', frame) jpg_as_text = base64.b64encode(buffer) # print(jpg_as_text)
def progress(msg, br=False): lib.progress("[AUGMENT] %s"%msg,br)
### mk_analysis_expStratifiedRecall from __future__ import division import sys _,data_dirpath,nDiv,method_name,topK = sys.argv nDiv,topK = int(nDiv),int(topK) from lib import progress, gen_path, gen_data_filename, gen_mk_out_filename ### items fin_filename = gen_path(data_dirpath, "items.dat") items = [] with open(fin_filename) as fin: progress("reading %s..."%fin_filename) for line in fin: i = int(line) items.append(i) recall_at = {} for d in range(1, nDiv): ### read train data fin_filename = gen_path(method_name, gen_data_filename(d, nDiv, "train")) train_ratings = [] with open(fin_filename) as fin: progress("reading %s..."%fin_filename) for line in fin: u,i,r,t = line.split() u,i,r,t = int(u),int(i),float(r),int(t) train_ratings.append((u,i,r,t)) ### read test data fin_filename = gen_path(method_name, gen_data_filename(d, nDiv, "test"))
def progress(msg, br=False): lib.progress("[TRAIN] %s"%msg,br)
'--size', dest='size', type=int, action='store', default=50, help='flocksize') ap.add_argument( '-S', '--speed', dest='speed', type=int, action='store', help='glider speed. if not specified, speed is randomized 1..5') args = ap.parse_args() flock = GliderFlock( width=args.width, height=args.height, length=args.length, size=args.size, speed=args.speed, ) for i in range(args.iterations): flock.step() cv2.imwrite(os.path.join(args.outdir, '{:05d}.png'.format(i)), flock.array * 255) progress(i, args.iterations) stdout.write('\n')
dest='rate', type=float, action='store', help='rate') args = parser.parse_args() image = np.zeros((args.height, args.width, 3), dtype=np.uint8) meta, audio = ap.loadwav(args.audiofile) blocksize = meta.rate // args.fps blocks = meta.samples // blocksize scroll = blocksize // args.height last_img = None for i, block in enumerate(ap.audio_chunks(audio, blocksize)): img = last_img if last_img is not None else image img = render_frame( img, block.T[0] if meta.channels > 1 else block, blocksize, args.width, args.height, raw=args.raw, ) cv2.imwrite(os.path.join(args.outdir, '{0:05d}.png'.format(i + 1)), img) last_img = np.zeros(img.shape, img.dtype) # scroll left last_img[:, 0:args.width - scroll] = img[:, scroll:] # progress lib.progress(i, blocks)