Exemplo n.º 1
0
def configClassifier(x_raw, is_Training):
    with tf.variable_scope('Classifier'):
        google_net_model = GoogleNet_Model.GoogleNet_Model()
        embedding = google_net_model.forward(x_raw)

        embedding_y_origin = 0
        if FLAGS.Apply_HDML:
            embedding_y_origin = embedding

        # Batch Normalization layer 1
        embedding = nn_Ops.bn_block(embedding,
                                    normal=FLAGS.normalize,
                                    is_Training=is_Training,
                                    name='BN1')

        # FC layer 1
        embedding_z = nn_Ops.fc_block(embedding,
                                      in_d=1024,
                                      out_d=FLAGS.embedding_size,
                                      name='fc1',
                                      is_bn=False,
                                      is_relu=False,
                                      is_Training=is_Training)

        # Embedding Visualization
        assignment, embedding_var = Embedding_Visualization.embedding_assign(
            batch_size=256,
            embedding=embedding_z,
            embedding_size=FLAGS.embedding_size,
            name='Embedding_of_fc1')

        return embedding_y_origin, embedding_z
Exemplo n.º 2
0
def main(_):
    if not FLAGS.LossType == 'NpairLoss':
        print("LossType n-pair-loss is required")
        return 0

    # placeholders
    x_raw = tf.placeholder(
        tf.float32,
        shape=[None, FLAGS.default_image_size, FLAGS.default_image_size, 3])
    label_raw = tf.placeholder(tf.int32, shape=[None, 1])
    with tf.name_scope('istraining'):
        is_Training = tf.placeholder(tf.bool)
    with tf.name_scope('learning_rate'):
        lr = tf.placeholder(tf.float32)

    with tf.variable_scope('Classifier'):
        google_net_model = GoogleNet_Model.GoogleNet_Model()
        embedding = google_net_model.forward(x_raw)
        if FLAGS.Apply_HDML:
            embedding_y_origin = embedding

        # Batch Normalization layer 1
        embedding = nn_Ops.bn_block(embedding,
                                    normal=FLAGS.normalize,
                                    is_Training=is_Training,
                                    name='BN1')

        # FC layer 1
        embedding_z = nn_Ops.fc_block(embedding,
                                      in_d=1024,
                                      out_d=FLAGS.embedding_size,
                                      name='fc1',
                                      is_bn=False,
                                      is_relu=False,
                                      is_Training=is_Training)

        # Embedding Visualization
        assignment, embedding_var = Embedding_Visualization.embedding_assign(
            batch_size=256,
            embedding=embedding_z,
            embedding_size=FLAGS.embedding_size,
            name='Embedding_of_fc1')

        # conventional Loss function
        with tf.name_scope('Loss'):
            # wdLoss = layers.apply_regularization(regularizer, weights_list=None)
            def exclude_batch_norm(name):
                return 'batch_normalization' not in name and 'Generator' not in name and 'Loss' not in name

            wdLoss = FLAGS.Regular_factor * tf.add_n([
                tf.nn.l2_loss(v)
                for v in tf.trainable_variables() if exclude_batch_norm(v.name)
            ])
            # Get the Label
            label = tf.reduce_mean(label_raw, axis=1, keep_dims=False)
            # For some kinds of Losses, the embedding should be l2 normed
            #embedding_l = embedding_z
            J_m = Loss_ops.Loss(embedding_z, label, FLAGS.LossType) + wdLoss

    # if HNG is applied
    if FLAGS.Apply_HDML:
        with tf.name_scope('Javg'):
            Javg = tf.placeholder(tf.float32)
        with tf.name_scope('Jgen'):
            Jgen = tf.placeholder(tf.float32)

        embedding_z_quta = HDML.Pulling(FLAGS.LossType, embedding_z, Javg)

        embedding_z_concate = tf.concat([embedding_z, embedding_z_quta],
                                        axis=0)

        # Generator
        with tf.variable_scope('Generator'):

            # generator fc3
            embedding_y_concate = nn_Ops.fc_block(embedding_z_concate,
                                                  in_d=FLAGS.embedding_size,
                                                  out_d=512,
                                                  name='generator1',
                                                  is_bn=True,
                                                  is_relu=True,
                                                  is_Training=is_Training)

            # generator fc4
            embedding_y_concate = nn_Ops.fc_block(embedding_y_concate,
                                                  in_d=512,
                                                  out_d=1024,
                                                  name='generator2',
                                                  is_bn=False,
                                                  is_relu=False,
                                                  is_Training=is_Training)

            embedding_yp, embedding_yq = HDML.npairSplit(embedding_y_concate)

        with tf.variable_scope('Classifier'):
            embedding_z_quta = nn_Ops.bn_block(embedding_yq,
                                               normal=FLAGS.normalize,
                                               is_Training=is_Training,
                                               name='BN1',
                                               reuse=True)

            embedding_z_quta = nn_Ops.fc_block(embedding_z_quta,
                                               in_d=1024,
                                               out_d=FLAGS.embedding_size,
                                               name='fc1',
                                               is_bn=False,
                                               is_relu=False,
                                               reuse=True,
                                               is_Training=is_Training)

            embedding_zq_anc = tf.slice(
                input_=embedding_z_quta,
                begin=[0, 0],
                size=[int(FLAGS.batch_size / 2),
                      int(FLAGS.embedding_size)])
            embedding_zq_negtile = tf.slice(
                input_=embedding_z_quta,
                begin=[int(FLAGS.batch_size / 2), 0],
                size=[
                    int(np.square(FLAGS.batch_size / 2)),
                    int(FLAGS.embedding_size)
                ])

        with tf.name_scope('Loss'):
            J_syn = (1. -
                     tf.exp(-FLAGS.beta / Jgen)) * Loss_ops.new_npair_loss(
                         labels=label,
                         embedding_anchor=embedding_zq_anc,
                         embedding_positive=embedding_zq_negtile,
                         equal_shape=False,
                         reg_lambda=FLAGS.loss_l2_reg)
            J_m = (tf.exp(-FLAGS.beta / Jgen)) * J_m
            J_metric = J_m + J_syn

            cross_entropy, W_fc, b_fc = HDML.cross_entropy(
                embedding=embedding_y_origin, label=label)

            embedding_yq_anc = tf.slice(input_=embedding_yq,
                                        begin=[0, 0],
                                        size=[int(FLAGS.batch_size / 2), 1024])
            embedding_yq_negtile = tf.slice(
                input_=embedding_yq,
                begin=[int(FLAGS.batch_size / 2), 0],
                size=[int(np.square(FLAGS.batch_size / 2)), 1024])
            J_recon = (1 - FLAGS._lambda) * tf.reduce_sum(
                tf.square(embedding_yp - embedding_y_origin))
            J_soft = HDML.genSoftmax(embedding_anc=embedding_yq_anc,
                                     embedding_neg=embedding_yq_negtile,
                                     W_fc=W_fc,
                                     b_fc=b_fc,
                                     label=label)
            J_gen = J_recon + J_soft

    if FLAGS.Apply_HDML:
        c_train_step = nn_Ops.training(loss=J_metric,
                                       lr=lr,
                                       var_scope='Classifier')
        g_train_step = nn_Ops.training(loss=J_gen,
                                       lr=FLAGS.lr_gen,
                                       var_scope='Generator')
        s_train_step = nn_Ops.training(loss=cross_entropy,
                                       lr=FLAGS.s_lr,
                                       var_scope='Softmax_classifier')
    else:
        train_step = nn_Ops.training(loss=J_m, lr=lr)

    # initialise the session
    with tf.Session(config=config) as sess:
        # Initial all the variables with the sess
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()

        # learning rate
        _lr = FLAGS.init_learning_rate

        # Restore a checkpoint
        if FLAGS.load_formalVal:
            saver.restore(
                sess, FLAGS.log_save_path + FLAGS.dataSet + '/' +
                FLAGS.LossType + '/' + FLAGS.formerTimer)

        # Training
        # epoch_iterator = stream_train.get_epoch_iterator()

        # collectors
        J_m_loss = nn_Ops.data_collector(tag='Jm', init=1e+6)
        J_syn_loss = nn_Ops.data_collector(tag='J_syn', init=1e+6)
        J_metric_loss = nn_Ops.data_collector(tag='J_metric', init=1e+6)
        J_soft_loss = nn_Ops.data_collector(tag='J_soft', init=1e+6)
        J_recon_loss = nn_Ops.data_collector(tag='J_recon', init=1e+6)
        J_gen_loss = nn_Ops.data_collector(tag='J_gen', init=1e+6)
        cross_entropy_loss = nn_Ops.data_collector(tag='cross_entropy',
                                                   init=1e+6)
        wd_Loss = nn_Ops.data_collector(tag='weight_decay', init=1e+6)
        # max_nmi = 0
        # step = 0
        #
        # bp_epoch = FLAGS.init_batch_per_epoch
        # evaluation
        print('only eval!')
        # nmi_tr, f1_tr, recalls_tr = evaluation.Evaluation(
        #     stream_train_eval, image_mean, sess, x_raw, label_raw, is_Training, embedding_z, 98, neighbours)
        # nmi_te, f1_te, recalls_te = evaluation.Evaluation(
        #     stream_test, image_mean, sess, x_raw, label_raw, is_Training, embedding_z, FLAGS.num_class_test, neighbours)
        embeddings, labels = evaluation.Evaluation_icon2(
            stream_train, image_mean, sess, x_raw, label_raw, is_Training,
            embedding_z, FLAGS.num_class_test, neighbours)
        out_dir = os.path.expanduser(
            FLAGS.log_save_path[0:len(FLAGS.log_save_path) - 1] +
            '_embeddings')
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
        for idx, distance in enumerate(embeddings):
            save_1Darray(distance,
                         os.path.expanduser(os.path.join(out_dir, str(idx))))
        print('End')
Exemplo n.º 3
0
def main(_):
    if not FLAGS.LossType == 'NpairLoss':
        print("LossType n-pair-loss is required")
        return 0

    # placeholders
    x_raw = tf.placeholder(
        tf.float32,
        shape=[None, FLAGS.default_image_size, FLAGS.default_image_size, 3])
    label_raw = tf.placeholder(tf.int32, shape=[None, 1])
    with tf.name_scope('istraining'):
        is_Training = tf.placeholder(tf.bool)
    with tf.name_scope('learning_rate'):
        lr = tf.placeholder(tf.float32)

    with tf.variable_scope('Classifier'):
        google_net_model = GoogleNet_Model.GoogleNet_Model()
        embedding = google_net_model.forward(x_raw)
        if FLAGS.Apply_HDML:
            embedding_y_origin = embedding

        # Batch Normalization layer 1
        embedding = nn_Ops.bn_block(embedding,
                                    normal=FLAGS.normalize,
                                    is_Training=is_Training,
                                    name='BN1')

        # FC layer 1
        embedding_z = nn_Ops.fc_block(embedding,
                                      in_d=1024,
                                      out_d=FLAGS.embedding_size,
                                      name='fc1',
                                      is_bn=False,
                                      is_relu=False,
                                      is_Training=is_Training)

        # Embedding Visualization
        assignment, embedding_var = Embedding_Visualization.embedding_assign(
            batch_size=256,
            embedding=embedding_z,
            embedding_size=FLAGS.embedding_size,
            name='Embedding_of_fc1')

        # conventional Loss function
        with tf.name_scope('Loss'):
            # wdLoss = layers.apply_regularization(regularizer, weights_list=None)
            def exclude_batch_norm(name):
                return 'batch_normalization' not in name and 'Generator' not in name and 'Loss' not in name

            wdLoss = FLAGS.Regular_factor * tf.add_n([
                tf.nn.l2_loss(v)
                for v in tf.trainable_variables() if exclude_batch_norm(v.name)
            ])
            # Get the Label
            label = tf.reduce_mean(label_raw, axis=1, keep_dims=False)
            # For some kinds of Losses, the embedding should be l2 normed
            #embedding_l = embedding_z
            J_m = Loss_ops.Loss(embedding_z, label, FLAGS.LossType) + wdLoss

    # if HNG is applied
    if FLAGS.Apply_HDML:
        with tf.name_scope('Javg'):
            Javg = tf.placeholder(tf.float32)
        with tf.name_scope('Jgen'):
            Jgen = tf.placeholder(tf.float32)

        embedding_z_quta = HDML.Pulling(FLAGS.LossType, embedding_z, Javg)

        embedding_z_concate = tf.concat([embedding_z, embedding_z_quta],
                                        axis=0)

        # Generator
        with tf.variable_scope('Generator'):

            # generator fc3
            embedding_y_concate = nn_Ops.fc_block(embedding_z_concate,
                                                  in_d=FLAGS.embedding_size,
                                                  out_d=512,
                                                  name='generator1',
                                                  is_bn=True,
                                                  is_relu=True,
                                                  is_Training=is_Training)

            # generator fc4
            embedding_y_concate = nn_Ops.fc_block(embedding_y_concate,
                                                  in_d=512,
                                                  out_d=1024,
                                                  name='generator2',
                                                  is_bn=False,
                                                  is_relu=False,
                                                  is_Training=is_Training)

            embedding_yp, embedding_yq = HDML.npairSplit(embedding_y_concate)

        with tf.variable_scope('Classifier'):
            embedding_z_quta = nn_Ops.bn_block(embedding_yq,
                                               normal=FLAGS.normalize,
                                               is_Training=is_Training,
                                               name='BN1',
                                               reuse=True)

            embedding_z_quta = nn_Ops.fc_block(embedding_z_quta,
                                               in_d=1024,
                                               out_d=FLAGS.embedding_size,
                                               name='fc1',
                                               is_bn=False,
                                               is_relu=False,
                                               reuse=True,
                                               is_Training=is_Training)

            embedding_zq_anc = tf.slice(
                input_=embedding_z_quta,
                begin=[0, 0],
                size=[int(FLAGS.batch_size / 2),
                      int(FLAGS.embedding_size)])
            embedding_zq_negtile = tf.slice(
                input_=embedding_z_quta,
                begin=[int(FLAGS.batch_size / 2), 0],
                size=[
                    int(np.square(FLAGS.batch_size / 2)),
                    int(FLAGS.embedding_size)
                ])

        with tf.name_scope('Loss'):
            J_syn = (1. -
                     tf.exp(-FLAGS.beta / Jgen)) * Loss_ops.new_npair_loss(
                         labels=label,
                         embedding_anchor=embedding_zq_anc,
                         embedding_positive=embedding_zq_negtile,
                         equal_shape=False,
                         reg_lambda=FLAGS.loss_l2_reg)
            J_m = (tf.exp(-FLAGS.beta / Jgen)) * J_m
            J_metric = J_m + J_syn

            cross_entropy, W_fc, b_fc = HDML.cross_entropy(
                embedding=embedding_y_origin, label=label)

            embedding_yq_anc = tf.slice(input_=embedding_yq,
                                        begin=[0, 0],
                                        size=[int(FLAGS.batch_size / 2), 1024])
            embedding_yq_negtile = tf.slice(
                input_=embedding_yq,
                begin=[int(FLAGS.batch_size / 2), 0],
                size=[int(np.square(FLAGS.batch_size / 2)), 1024])
            J_recon = (1 - FLAGS._lambda) * tf.reduce_sum(
                tf.square(embedding_yp - embedding_y_origin))
            J_soft = HDML.genSoftmax(embedding_anc=embedding_yq_anc,
                                     embedding_neg=embedding_yq_negtile,
                                     W_fc=W_fc,
                                     b_fc=b_fc,
                                     label=label)
            J_gen = J_recon + J_soft

    if FLAGS.Apply_HDML:
        c_train_step = nn_Ops.training(loss=J_metric,
                                       lr=lr,
                                       var_scope='Classifier')
        g_train_step = nn_Ops.training(loss=J_gen,
                                       lr=FLAGS.lr_gen,
                                       var_scope='Generator')
        s_train_step = nn_Ops.training(loss=cross_entropy,
                                       lr=FLAGS.s_lr,
                                       var_scope='Softmax_classifier')
    else:
        train_step = nn_Ops.training(loss=J_m, lr=lr)

    # initialise the session
    with tf.Session(config=config) as sess:
        # Initial all the variables with the sess
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()

        # learning rate
        _lr = FLAGS.init_learning_rate

        # Restore a checkpoint
        if FLAGS.load_formalVal:
            saver.restore(
                sess, FLAGS.log_save_path + FLAGS.dataSet + '/' +
                FLAGS.LossType + '/' + FLAGS.formerTimer)

        # Training
        epoch_iterator = stream_train.get_epoch_iterator()

        # collectors
        J_m_loss = nn_Ops.data_collector(tag='Jm', init=1e+6)
        J_syn_loss = nn_Ops.data_collector(tag='J_syn', init=1e+6)
        J_metric_loss = nn_Ops.data_collector(tag='J_metric', init=1e+6)
        J_soft_loss = nn_Ops.data_collector(tag='J_soft', init=1e+6)
        J_recon_loss = nn_Ops.data_collector(tag='J_recon', init=1e+6)
        J_gen_loss = nn_Ops.data_collector(tag='J_gen', init=1e+6)
        cross_entropy_loss = nn_Ops.data_collector(tag='cross_entropy',
                                                   init=1e+6)
        wd_Loss = nn_Ops.data_collector(tag='weight_decay', init=1e+6)
        max_nmi = 0
        step = 0

        bp_epoch = FLAGS.init_batch_per_epoch
        with tqdm(total=FLAGS.max_steps) as pbar:
            for batch in copy.copy(epoch_iterator):
                # get images and labels from batch
                x_batch_data, Label_raw = nn_Ops.batch_data(batch)
                pbar.update(1)
                if not FLAGS.Apply_HDML:
                    train, J_m_var, wd_Loss_var = sess.run(
                        [train_step, J_m, wdLoss],
                        feed_dict={
                            x_raw: x_batch_data,
                            label_raw: Label_raw,
                            is_Training: True,
                            lr: _lr
                        })
                    J_m_loss.update(var=J_m_var)
                    wd_Loss.update(var=wd_Loss_var)

                else:
                    c_train, g_train, s_train, wd_Loss_var, J_metric_var, J_m_var, \
                        J_syn_var, J_recon_var,  J_soft_var, J_gen_var, cross_en_var = sess.run(
                            [c_train_step, g_train_step, s_train_step, wdLoss,
                             J_metric, J_m, J_syn, J_recon, J_soft, J_gen, cross_entropy],
                            feed_dict={x_raw: x_batch_data,
                                       label_raw: Label_raw,
                                       is_Training: True, lr: _lr, Javg: J_m_loss.read(), Jgen: J_gen_loss.read()})
                    wd_Loss.update(var=wd_Loss_var)
                    J_metric_loss.update(var=J_metric_var)
                    J_m_loss.update(var=J_m_var)
                    J_syn_loss.update(var=J_syn_var)
                    J_recon_loss.update(var=J_recon_var)
                    J_soft_loss.update(var=J_soft_var)
                    J_gen_loss.update(var=J_gen_var)
                    cross_entropy_loss.update(cross_en_var)
                step += 1
                # print('learning rate %f' % _lr)

                # evaluation
                if step % bp_epoch == 0:
                    print('only eval eval')
                    # nmi_tr, f1_tr, recalls_tr = evaluation.Evaluation(
                    #     stream_train_eval, image_mean, sess, x_raw, label_raw, is_Training, embedding_z, 98, neighbours)
                    nmi_te, f1_te, recalls_te = evaluation.Evaluation(
                        stream_test, image_mean, sess, x_raw, label_raw,
                        is_Training, embedding_z, FLAGS.num_class_test,
                        neighbours)

                    # Summary
                    eval_summary = tf.Summary()
                    # eval_summary.value.add(tag='train nmi', simple_value=nmi_tr)
                    # eval_summary.value.add(tag='train f1', simple_value=f1_tr)
                    # for i in range(0, np.shape(neighbours)[0]):
                    #     eval_summary.value.add(tag='Recall@%d train' % neighbours[i], simple_value=recalls_tr[i])
                    eval_summary.value.add(tag='test nmi', simple_value=nmi_te)
                    eval_summary.value.add(tag='test f1', simple_value=f1_te)
                    for i in range(0, np.shape(neighbours)[0]):
                        eval_summary.value.add(tag='Recall@%d test' %
                                               neighbours[i],
                                               simple_value=recalls_te[i])
                    J_m_loss.write_to_tfboard(eval_summary)
                    wd_Loss.write_to_tfboard(eval_summary)
                    eval_summary.value.add(tag='learning_rate',
                                           simple_value=_lr)
                    if FLAGS.Apply_HDML:
                        J_syn_loss.write_to_tfboard(eval_summary)
                        J_metric_loss.write_to_tfboard(eval_summary)
                        J_soft_loss.write_to_tfboard(eval_summary)
                        J_recon_loss.write_to_tfboard(eval_summary)
                        J_gen_loss.write_to_tfboard(eval_summary)
                        cross_entropy_loss.write_to_tfboard(eval_summary)
                    summary_writer.add_summary(eval_summary, step)
                    print('Summary written')
                    if nmi_te > max_nmi:
                        max_nmi = nmi_te
                        print("Saved")
                        saver.save(sess, os.path.join(LOGDIR,
                                                      "modelBest.ckpt"))
                    saver.save(sess, os.path.join(LOGDIR, "model.ckpt"))
                    summary_writer.flush()
                    # if step in [5632, 6848]:
                    #     _lr = _lr * 0.5

                    if step >= 5000:
                        bp_epoch = FLAGS.batch_per_epoch
                    if step >= FLAGS.max_steps:
                        os._exit()