Exemplo n.º 1
0
def test2D():
    modes = {
        'reflect': NumCpp.Mode.REFLECT,
        'constant': NumCpp.Mode.CONSTANT,
        'nearest': NumCpp.Mode.NEAREST,
        'mirror': NumCpp.Mode.MIRROR,
        'wrap': NumCpp.Mode.WRAP
    }

    for mode in modes.keys():
        print(
            colored(f'Testing complementaryMedianFilter: mode = {mode}',
                    'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.complementaryMedianFilter(
            cArray, kernalSize, modes[mode], constantValue).getNumpyArray()
        dataOutPy = data - filters.median_filter(
            data, size=kernalSize, mode=mode, cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing convolve: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(10, 20, shape).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        weights = np.random.randint(-2, 3,
                                    [kernalSize, kernalSize]).astype(np.double)
        cWeights = NumCpp.NdArray(kernalSize)
        cWeights.setArray(weights)
        dataOutC = NumCpp.convolve(cArray, kernalSize, cWeights, modes[mode],
                                   constantValue).getNumpyArray()
        dataOutPy = filters.convolve(data,
                                     weights,
                                     mode=mode,
                                     cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing gaussianFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape).astype(np.double)
        cArray.setArray(data)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        sigma = np.random.rand(1).item() * 2
        dataOutC = NumCpp.gaussianFilter(cArray, sigma, modes[mode],
                                         constantValue).getNumpyArray()
        dataOutPy = filters.gaussian_filter(data,
                                            sigma,
                                            mode=mode,
                                            cval=constantValue)
        if np.array_equal(np.round(dataOutC, 2), np.round(dataOutPy, 2)):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing maximumFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.maximumFilter(cArray, kernalSize, modes[mode],
                                        constantValue).getNumpyArray()
        dataOutPy = filters.maximum_filter(data,
                                           size=kernalSize,
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing medianFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.medianFilter(cArray, kernalSize, modes[mode],
                                       constantValue).getNumpyArray()
        dataOutPy = filters.median_filter(data,
                                          size=kernalSize,
                                          mode=mode,
                                          cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing minimumFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.minimumFilter(cArray, kernalSize, modes[mode],
                                        constantValue).getNumpyArray()
        dataOutPy = filters.minimum_filter(data,
                                           size=kernalSize,
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing percentileFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        percentile = np.random.randint(0, 101, [
            1,
        ]).item()
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.percentileFilter(cArray, kernalSize, percentile,
                                           modes[mode],
                                           constantValue).getNumpyArray()
        dataOutPy = filters.percentile_filter(data,
                                              percentile,
                                              size=kernalSize,
                                              mode=mode,
                                              cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing rankFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        rank = np.random.randint(0, kernalSize**2 - 1, [
            1,
        ]).item()
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.rankFilter(cArray, kernalSize, rank, modes[mode],
                                     constantValue).getNumpyArray()
        dataOutPy = filters.rank_filter(data,
                                        rank,
                                        size=kernalSize,
                                        mode=mode,
                                        cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing uniformFilter: mode = {mode}', 'cyan'))
        shape = np.random.randint(1000, 2000, [
            2,
        ]).tolist()
        cShape = NumCpp.Shape(shape[0], shape[1])
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, shape).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.uniformFilter(cArray, kernalSize, modes[mode],
                                        constantValue).getNumpyArray()
        dataOutPy = filters.uniform_filter(data,
                                           size=kernalSize,
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(np.round(dataOutC, 8), np.round(dataOutPy, 8)):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))
Exemplo n.º 2
0
def doTest():
    print(colored('Testing Random Module', 'magenta'))

    # it is kind of hard to test randomness so my criteria for passing will
    # simply be whether or not it crashes

    print(colored('Testing bernoulli', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    p = np.random.rand()
    r = NumCpp.Random.bernoulli(inShape, p)
    print(colored('\tPASS', 'green'))

    print(colored('Testing beta', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    alpha = np.random.rand()
    beta = np.random.rand()
    r = NumCpp.Random.beta(inShape, alpha, beta)
    print(colored('\tPASS', 'green'))

    print(colored('Testing binomial', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    n = np.random.randint(1, 100, [1,]).item()
    p = np.random.rand()
    r = NumCpp.Random.binomial(inShape, n, p)
    print(colored('\tPASS', 'green'))

    print(colored('Testing chiSquare', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    dof = np.random.randint(1, 100, [1,]).item()
    r = NumCpp.Random.chiSquare(inShape, dof)
    print(colored('\tPASS', 'green'))

    print(colored('Testing choice: Single', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2, ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    data = np.random.rand(shape.rows, shape.cols)
    cArray.setArray(data)
    r = NumCpp.Random.choiceSingle(cArray)
    print(colored('\tPASS', 'green'))

    print(colored('Testing choice: Multiple', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2, ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    data = np.random.rand(shape.rows, shape.cols)
    cArray.setArray(data)
    num = np.random.randint(1, data.size, [1,]).item()
    r = NumCpp.Random.choiceMultiple(cArray, num)
    if r.size == num:
        print(colored('\tPASS', 'green'))

    print(colored('Testing cauchy', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    mean = np.random.randn() * 10
    sigma = np.random.rand() * 10
    r = NumCpp.Random.cauchy(inShape, mean, sigma)
    print(colored('\tPASS', 'green'))

    print(colored('Testing discrete', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2, ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    weights = np.random.randint(1, 10, [shape.rows, shape.cols])
    cArray.setArray(weights)
    r = NumCpp.Random.discrete(inShape, cArray)
    print(colored('\tPASS', 'green'))

    print(colored('Testing exponential', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    scale = np.random.rand() * 10
    r = NumCpp.Random.exponential(inShape, scale)
    print(colored('\tPASS', 'green'))

    print(colored('Testing extremeValue', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    a = np.random.rand() * 10
    b = np.random.rand() * 100
    r = NumCpp.Random.extremeValue(inShape, a, b)
    print(colored('\tPASS', 'green'))

    print(colored('Testing f', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    dofN = np.random.rand() * 10
    dofD = np.random.rand() * 100
    r = NumCpp.Random.f(inShape, dofN, dofD)
    print(colored('\tPASS', 'green'))

    print(colored('Testing gamma', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    shape = np.random.rand() * 10
    scale = np.random.rand() * 100
    r = NumCpp.Random.gamma(inShape, shape, scale)
    print(colored('\tPASS', 'green'))

    print(colored('Testing geometric', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    p = np.random.rand()
    r = NumCpp.Random.geometric(inShape, p)
    print(colored('\tPASS', 'green'))

    print(colored('Testing laplace', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    loc = np.random.rand() * 10
    scale = np.random.rand() * 100
    r = NumCpp.Random.laplace(inShape, loc, scale)
    print(colored('\tPASS', 'green'))

    print(colored('Testing lognormal', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    mean = np.random.randn() * 10
    sigma = np.random.rand() * 10
    r = NumCpp.Random.lognormal(inShape, mean, sigma)
    print(colored('\tPASS', 'green'))

    print(colored('Testing negativeBinomial', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    n = np.random.randint(1, 100, [1,]).item()
    p = np.random.rand()
    r = NumCpp.Random.negativeBinomial(inShape, n, p)
    print(colored('\tPASS', 'green'))

    print(colored('Testing nonCentralChiSquared', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    k = np.random.rand() * 10
    l = np.random.rand() * 100
    r = NumCpp.Random.nonCentralChiSquared(inShape, k, l)
    print(colored('\tPASS', 'green'))

    print(colored('Testing normal', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    mean = np.random.randn() * 10
    sigma = np.random.rand() * 10
    r = NumCpp.Random.normal(inShape, mean, sigma)
    print(colored('\tPASS', 'green'))

    print(colored('Testing permutation scalar', 'cyan'))
    r = NumCpp.Random.permutationScaler(np.random.randint(1,100, [1,]).item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing permutation array', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2, ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 10, [shape.rows, shape.cols])
    cArray.setArray(data)
    r = NumCpp.Random.permutationArray(cArray)
    print(colored('\tPASS', 'green'))

    print(colored('Testing poisson', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    mean = np.random.rand() * 10
    r = NumCpp.Random.poisson(inShape, mean)
    print(colored('\tPASS', 'green'))

    print(colored('Testing rand', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    r = NumCpp.Random.rand(inShape)
    print(colored('\tPASS', 'green'))

    print(colored('Testing randFloat', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    values = np.random.randint(1, 100, [2, ])
    r = NumCpp.Random.randFloat(inShape, values[0].item(), values[1].item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing randInt', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    values = np.random.randint(1, 100, [2, ])
    r = NumCpp.Random.randInt(inShape, values[0].item(), values[1].item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing randN', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    r = NumCpp.Random.randN(inShape)
    print(colored('\tPASS', 'green'))

    print(colored('Testing seed', 'cyan'))
    NumCpp.Random.seed(np.random.randint(0, 100000, [1,]).item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing shuffle array', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2, ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 10, [shape.rows, shape.cols])
    cArray.setArray(data)
    NumCpp.Random.shuffle(cArray)
    print(colored('\tPASS', 'green'))

    print(colored('Testing standardNormal', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    r = NumCpp.Random.standardNormal(inShape)
    print(colored('\tPASS', 'green'))

    print(colored('Testing studentT', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    dof = np.random.randint(1, 100, [1, ]).item()
    r = NumCpp.Random.studentT(inShape, dof)
    print(colored('\tPASS', 'green'))

    print(colored('Testing triangle', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    values = np.random.rand(3)
    values.sort()
    r = NumCpp.Random.triangle(inShape, values[0].item(), values[1].item(), values[2].item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing uniform', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    values = np.random.randint(1, 100, [2, ])
    r = NumCpp.Random.uniform(inShape, values[0].item(), values[1].item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing uniformOnSphere', 'cyan'))
    inputs = np.random.randint(1, 100, [2,])
    r = NumCpp.Random.uniformOnSphere(inputs[0].item(), inputs[1].item())
    print(colored('\tPASS', 'green'))

    print(colored('Testing weibull', 'cyan'))
    shapeInput = np.random.randint(1, 100, [2,])
    inShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    inputs = np.random.rand(2)
    r = NumCpp.Random.weibull(inShape, inputs[0].item(), inputs[1].item())
    print(colored('\tPASS', 'green'))
Exemplo n.º 3
0
def test1D():
    modes = {
        'reflect': NumCpp.Mode.REFLECT,
        'constant': NumCpp.Mode.CONSTANT,
        'nearest': NumCpp.Mode.NEAREST,
        'mirror': NumCpp.Mode.MIRROR,
        'wrap': NumCpp.Mode.WRAP
    }

    for mode in modes.keys():
        print(
            colored(f'Testing complementaryMedianFilter1d: mode = {mode}',
                    'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ])
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.complementaryMedianFilter1d(
            cArray, kernalSize, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = data - filters.generic_filter(data,
                                                  np.median,
                                                  footprint=np.ones([
                                                      kernalSize,
                                                  ]),
                                                  mode=mode,
                                                  cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing convolve1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ]).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        weights = np.random.randint(1, 5, [
            kernalSize,
        ])
        cWeights = NumCpp.NdArray(1, kernalSize)
        cWeights.setArray(weights)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.convolve1d(cArray, cWeights, modes[mode],
                                     constantValue).getNumpyArray().flatten()
        dataOutPy = filters.convolve(data,
                                     weights,
                                     mode=mode,
                                     cval=constantValue)
        if np.array_equal(np.round(dataOutC, 8), np.round(dataOutPy, 8)):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing gaussianFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ]).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        sigma = np.random.rand(1).item() * 2
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.gaussianFilter1d(
            cArray, sigma, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.gaussian_filter(data,
                                            sigma,
                                            mode=mode,
                                            cval=constantValue)
        if np.array_equal(np.round(dataOutC, 7), np.round(dataOutPy, 7)):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing maximumFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ])
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.maximumFilter1d(
            cArray, kernalSize, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.generic_filter(data,
                                           np.max,
                                           footprint=np.ones([
                                               kernalSize,
                                           ]),
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing medianFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ])
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.medianFilter1d(
            cArray, kernalSize, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.generic_filter(data,
                                           np.median,
                                           footprint=np.ones([
                                               kernalSize,
                                           ]),
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing minumumFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ])
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.minumumFilter1d(
            cArray, kernalSize, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.generic_filter(data,
                                           np.min,
                                           footprint=np.ones([
                                               kernalSize,
                                           ]),
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing percentileFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ]).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        percentile = np.random.randint(0, 101, [
            1,
        ]).item()
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.percentileFilter1d(
            cArray, kernalSize, percentile, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.generic_filter(data,
                                           np.percentile,
                                           footprint=np.ones([
                                               kernalSize,
                                           ]),
                                           mode=mode,
                                           cval=constantValue,
                                           extra_arguments=(percentile, ))
        if np.array_equal(np.round(dataOutC, 7), np.round(dataOutPy, 7)):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing rankFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ]).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        rank = np.random.randint(0, kernalSize - 1, [
            1,
        ]).item()
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.rankFilter1d(
            cArray, kernalSize, rank, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.rank_filter(data,
                                        rank,
                                        footprint=np.ones([
                                            kernalSize,
                                        ]),
                                        mode=mode,
                                        cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))

        print(colored(f'Testing uniformFilter1d: mode = {mode}', 'cyan'))
        size = np.random.randint(1000, 2000, [
            1,
        ]).item()
        cShape = NumCpp.Shape(1, size)
        cArray = NumCpp.NdArray(cShape)
        data = np.random.randint(100, 1000, [
            size,
        ]).astype(np.double)
        cArray.setArray(data)
        kernalSize = 0
        while kernalSize % 2 == 0:
            kernalSize = np.random.randint(5, 15)
        constantValue = np.random.randint(0, 5, [
            1,
        ]).item()  # only actaully needed for constant boundary condition
        dataOutC = NumCpp.uniformFilter1d(
            cArray, kernalSize, modes[mode],
            constantValue).getNumpyArray().flatten()
        dataOutPy = filters.generic_filter(data,
                                           np.mean,
                                           footprint=np.ones([
                                               kernalSize,
                                           ]),
                                           mode=mode,
                                           cval=constantValue)
        if np.array_equal(dataOutC, dataOutPy):
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))
Exemplo n.º 4
0
def doTest():
    print(colored('Testing Image Processing Module', 'magenta'))

    # generate a random noise
    imageSize = 1024
    noiseStd = np.random.rand(1) * 4
    noiseMean = np.random.randint(75, 100, [
        1,
    ]).item()
    noise = np.round(
        np.random.randn(imageSize, imageSize) * noiseStd + noiseMean)

    # scatter some point sources on it
    pointSize = 5
    pointHalfSize = pointSize // 2
    pointSource = np.asarray([[1, 1, 1, 1, 1], [1, 5, 30, 5, 1],
                              [1, 30, 100, 30, 1], [1, 5, 30, 5, 1],
                              [1, 1, 1, 1, 1]])

    scene = noise.copy()
    numPointSources = 3000
    for point in range(numPointSources):
        row = np.random.randint(pointHalfSize, imageSize - pointHalfSize, [
            1,
        ]).item()
        col = np.random.randint(pointHalfSize, imageSize - pointHalfSize, [
            1,
        ]).item()

        cutout = scene[row - pointHalfSize:row + pointHalfSize + 1,
                       col - pointHalfSize:col + pointHalfSize + 1]
        cutout = cutout + pointSource
        scene[row - pointHalfSize:row + pointHalfSize + 1,
              col - pointHalfSize:col + pointHalfSize + 1] = cutout

    # generate centroids from the image
    thresholdRate = 0.014
    borderWidth = np.random.randint(0, 4, [
        1,
    ]).item()
    cScene = NumCpp.NdArray(imageSize)
    cScene.setArray(scene)

    threshold = NumCpp.generateThreshold(cScene, thresholdRate)
    print(f'Scene Min = {scene.min()}')
    print(f'Scene Max = {scene.max()}')
    print(f'Threshold = {threshold}')
    print(f'Desired Rate = {thresholdRate}')
    print(
        f'Actual Rate(Threshold) = {np.count_nonzero(scene > threshold) / scene.size}'
    )
    print(
        f'Actual Rate(Threshold - 1) = {np.count_nonzero(scene > threshold - 1) / scene.size}'
    )

    centroids = list(
        NumCpp.generateCentroids(cScene, thresholdRate, 'pre', borderWidth))
    print(
        f'Window Pre Number of Centroids (Border = {borderWidth}) = {len(centroids)}'
    )

    # plt the results
    plt.figure()
    plt.imshow(scene)
    plt.colorbar()
    plt.clim([threshold, threshold + 1])
    plt.xlabel('Rows')
    plt.ylabel('Cols')
    plt.title(f'Window Pre Centroids\nNumber of Centroids = {len(centroids)}')

    for centroid in centroids:
        plt.plot(centroid.col(), centroid.row(), 'og', fillstyle='none')

    plt.show()

    centroidInfo = np.asarray([[centroid.intensity(),
                                centroid.eod()] for centroid in centroids])

    plt.figure()
    plt.plot(np.sort(centroidInfo[:, 0].flatten()))
    plt.title('Window Pre Centroid Intensities')
    plt.xlabel('Centroid #')
    plt.ylabel('Counts')
    plt.show()

    plt.figure()
    plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100))
    plt.title('Window Pre Centroid EOD')
    plt.xlabel('Centroid #')
    plt.ylabel('EOD (%)')
    plt.show()

    centroids = list(
        NumCpp.generateCentroids(cScene, thresholdRate, 'post', borderWidth))
    print(
        f'Window Post Number of Centroids (Border = {borderWidth}) = {len(centroids)}'
    )

    # plt the results
    plt.figure()
    plt.imshow(scene)
    plt.colorbar()
    plt.clim([threshold, threshold + 1])
    plt.xlabel('Rows')
    plt.ylabel('Cols')
    plt.title(f'Window Post Centroids\nNumber of Centroids = {len(centroids)}')

    for centroid in centroids:
        plt.plot(centroid.col(), centroid.row(), 'og', fillstyle='none')

    plt.show()

    centroidInfo = np.asarray([[centroid.intensity(),
                                centroid.eod()] for centroid in centroids])

    plt.figure()
    plt.plot(np.sort(centroidInfo[:, 0].flatten()))
    plt.title('Window Post Centroid Intensities')
    plt.xlabel('Centroid #')
    plt.ylabel('Counts')
    plt.show()

    plt.figure()
    plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100))
    plt.title('Window Post Centroid EOD')
    plt.xlabel('Centroid #')
    plt.ylabel('EOD (%)')
    plt.show()

    print(colored('\tPASS', 'green'))
Exemplo n.º 5
0
def doTest():
    print(colored('Testing Polynomial Module', 'magenta'))
    print(colored('Testing Constructor', 'cyan'))
    numCoefficients = np.random.randint(3, 10, [
        1,
    ]).item()
    coefficients = np.random.randint(-20, 20, [
        numCoefficients,
    ])
    coefficientsC = NumCpp.NdArray(1, numCoefficients)
    coefficientsC.setArray(coefficients)
    polyC = NumCpp.Poly1d(coefficientsC, False)
    if np.array_equal(polyC.coefficients().getNumpyArray().flatten(),
                      coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing Constructor Roots', 'cyan'))
    numRoots = np.random.randint(3, 10, [
        1,
    ]).item()
    roots = np.random.randint(-20, 20, [
        numRoots,
    ])
    rootsC = NumCpp.NdArray(1, numRoots)
    rootsC.setArray(roots)
    poly = np.poly1d(roots, True)
    polyC = NumCpp.Poly1d(rootsC, True)
    if np.array_equal(
            np.fliplr(polyC.coefficients().getNumpyArray()).flatten().astype(
                np.int), poly.coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing order', 'cyan'))
    if polyC.order() == roots.size:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing operator()', 'cyan'))
    value = np.random.randint(-20, 20, [
        1,
    ]).item()
    if polyC[value] == poly(value):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing addition', 'cyan'))
    numCoefficients = np.random.randint(3, 10, [
        1,
    ]).item()
    coefficients = np.random.randint(-20, 20, [
        numCoefficients,
    ])
    coefficientsC = NumCpp.NdArray(1, numCoefficients)
    coefficientsC.setArray(coefficients)
    polyC2 = NumCpp.Poly1d(coefficientsC, False)
    poly2 = np.poly1d(np.flip(coefficients))
    if np.array_equal(
            np.fliplr(
                (polyC + polyC2).coefficients().getNumpyArray()).flatten(),
        (poly + poly2).coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing subtraction', 'cyan'))
    if np.array_equal(
            np.fliplr(
                (polyC - polyC2).coefficients().getNumpyArray()).flatten(),
        (poly - poly2).coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing multiplication', 'cyan'))
    if np.array_equal(
            np.fliplr(
                (polyC * polyC2).coefficients().getNumpyArray()).flatten(),
        (poly * poly2).coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing power', 'cyan'))
    exponent = np.random.randint(0, 5, [
        1,
    ]).item()
    if np.array_equal(
            np.fliplr(
                (polyC2**exponent).coefficients().getNumpyArray()).flatten(),
        (poly2**exponent).coefficients):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing print', 'cyan'))
    polyC.print()
Exemplo n.º 6
0
def doTest():
    print(colored('Testing DataCube Module', 'magenta'))

    print(colored('Testing Default Constructor', 'cyan'))
    dataCube = NumCpp.DataCube()
    if dataCube.isempty():
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing Size Constructor', 'cyan'))
    size = np.random.randint(10, 20, [
        1,
    ]).item()
    dataCube = NumCpp.DataCube(size)
    if dataCube.size() == size:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing push_front/push_back', 'cyan'))
    shape = np.random.randint(10, 100, [
        3,
    ])
    cShape = NumCpp.Shape(shape[0].item(), shape[1].item())
    data = np.random.randint(0, 100, shape)
    dataCube = NumCpp.DataCube()
    frameOrder = list()
    for frame in range(shape[-1]):
        cArray = NumCpp.NdArray(cShape)
        cArray.setArray(data[:, :, frame])
        if frame % 2 == 0:
            dataCube.push_back(cArray)
            frameOrder.append(frame)
        else:
            dataCube.push_front(cArray)
            frameOrder = [frame] + frameOrder
    if not dataCube.isempty() and dataCube.size() == shape[-1]:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing shape', 'cyan'))
    if dataCube.shape() == cShape:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing back', 'cyan'))
    if np.array_equal(dataCube.back().getNumpyArray(), data[:, :,
                                                            frameOrder[-1]]):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing front', 'cyan'))
    if np.array_equal(dataCube.front().getNumpyArray(), data[:, :,
                                                             frameOrder[0]]):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing [] operator', 'cyan'))
    allPass = True
    for idx, frame in enumerate(frameOrder):
        if not np.array_equal(dataCube[idx].getNumpyArray(), data[:, :,
                                                                  frame]):
            allPass = False
            break
    if allPass:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing at', 'cyan'))
    for idx, frame in enumerate(frameOrder):
        if not np.array_equal(
                dataCube.at(idx).getNumpyArray(), data[:, :, frame]):
            allPass = False
            break
    if allPass:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing dump', 'cyan'))
    tempDir = r'C:\Temp'
    if not os.path.exists(tempDir):
        os.mkdir(tempDir)
    tempFile = os.path.join(tempDir, 'DataCube.bin')
    dataCube.dump(tempFile)
    if os.path.exists(tempFile):
        filesize = os.path.getsize(tempFile)
        if filesize == data.size * 8:
            print(colored('\tPASS', 'green'))
        else:
            print(colored('\tFAIL', 'red'))
    else:
        print(colored('\tFAIL', 'red'))
    os.remove(tempFile)

    print(colored('Testing pop_front/pop_back', 'cyan'))
    sizeInitial = dataCube.size()
    sizeNow = sizeInitial
    allPass = True
    for idx in range(sizeInitial):
        if idx % 2 == 0:
            dataCube.pop_front()
        else:
            dataCube.pop_back()

        sizeNow -= 1

        if dataCube.size() != sizeNow:
            allPass = False

    if dataCube.isempty() and allPass:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))
Exemplo n.º 7
0
def doTest():
    print(colored('Testing Coordinates Module', 'magenta'))

    print(colored('Testing Ra', 'magenta'))
    print(colored('Testing Default Constructor', 'cyan'))
    ra = NumCpp.RaDouble()
    print(colored('\tPASS', 'green'))

    print(colored('Testing Degree Constructor', 'cyan'))
    randDegrees = np.random.rand(1).item() * 360
    ra = NumCpp.RaDouble(randDegrees)
    raPy = Longitude(randDegrees, unit=u.deg)
    if (round(ra.degrees(), 9) == round(randDegrees, 9) and
        ra.hours() == raPy.hms.h and
        ra.minutes() == raPy.hms.m and
        round(ra.seconds(), 9) == round(raPy.hms.s, 9) and
        round(ra.radians(), 9) == round(np.deg2rad(randDegrees), 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing hms Constructor', 'cyan'))
    hours = np.random.randint(0, 24, [1,], dtype=np.uint8).item()
    minutes = np.random.randint(0, 60, [1, ], dtype=np.uint8).item()
    seconds = np.random.rand(1).astype(np.float32).item() * 60
    ra = NumCpp.RaDouble(hours, minutes, seconds)
    degreesPy = (hours + minutes / 60 + seconds / 3600) * 15
    if (round(ra.degrees(), 9) == round(degreesPy, 9) and
        ra.hours() == hours and
        ra.minutes() == minutes and
        round(ra.seconds(), 9) == round(seconds, 9) and
        round(ra.radians(), 9) == round(np.deg2rad(degreesPy), 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing astype', 'cyan'))
    raF = ra.asFloat()
    if (round(ra.degrees(), 4) == round(raF.degrees(), 4) and
        ra.hours() == raF.hours() and
        ra.minutes() == raF.minutes() and
        round(ra.seconds(), 4) == round(raF.seconds(), 4) and
        round(ra.radians(), 4) == round(raF.radians(), 4)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing equality operator', 'cyan'))
    ra2 = NumCpp.RaDouble(ra)
    if ra == ra2:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing not equality operator', 'cyan'))
    randDegrees = np.random.rand(1).item() * 360
    ra2 = NumCpp.RaDouble(randDegrees)
    if ra != ra2:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing print', 'cyan'))
    ra.print()
    print(colored('\tPASS', 'green'))

    print(colored('Testing Dec', 'magenta'))
    print(colored('Testing Default Constructor', 'cyan'))
    dec = NumCpp.DecDouble()
    print(colored('\tPASS', 'green'))

    print(colored('Testing Degree Constructor', 'cyan'))
    randDegrees = np.random.rand(1).item() * 180 - 90
    dec = NumCpp.DecDouble(randDegrees)
    decPy = Latitude(randDegrees, unit=u.deg)
    sign = NumCpp.Sign.NEGATIVE if randDegrees < 0 else NumCpp.Sign.POSITIVE
    if (round(dec.degrees(), 8) == round(randDegrees, 8) and
        dec.sign() == sign and
        dec.degreesWhole() == abs(decPy.dms.d) and
        dec.minutes() == abs(decPy.dms.m) and
        round(dec.seconds(), 8) == round(abs(decPy.dms.s), 8) and
        round(dec.radians(), 8) == round(np.deg2rad(randDegrees), 8)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing dms Constructor', 'cyan'))
    sign = NumCpp.Sign.POSITIVE if np.random.randint(-1, 1) == 0 else NumCpp.Sign.NEGATIVE
    degrees = np.random.randint(0, 91, [1, ], dtype=np.uint8).item()
    minutes = np.random.randint(0, 60, [1, ], dtype=np.uint8).item()
    seconds = np.random.rand(1).astype(np.float32).item() * 60
    dec = NumCpp.DecDouble(sign, degrees, minutes, seconds)
    degreesPy = degrees + minutes / 60 + seconds / 3600
    if sign == NumCpp.Sign.NEGATIVE:
        degreesPy *= -1
    if (dec.sign() == sign and
        round(dec.degrees(), 9) == round(degreesPy, 9) and
        dec.degreesWhole() == degrees and
        dec.minutes() == minutes and
        round(dec.seconds(), 9) == round(seconds, 9) and
        round(dec.radians(), 8) == round(np.deg2rad(degreesPy), 8)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing astype', 'cyan'))
    decF = dec.asFloat()
    if (round(dec.degrees(), 4) == round(decF.degrees(), 4) and
        dec.sign() == decF.sign() and
        dec.degreesWhole() == decF.degreesWhole() and
        dec.minutes() == decF.minutes() and
        round(dec.seconds(), 4) == round(decF.seconds(), 4) and
        round(dec.radians(), 4) == round(decF.radians(), 4)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing equality operator', 'cyan'))
    dec2 = NumCpp.DecDouble(dec)
    if dec == dec2:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing not equality operator', 'cyan'))
    randDegrees = np.random.rand(1).item() * 180 - 90
    dec2 = NumCpp.DecDouble(randDegrees)
    if dec != dec2:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing print', 'cyan'))
    dec.print()
    print(colored('\tPASS', 'green'))

    print(colored('Testing Coordinate', 'magenta'))
    print(colored('Testing Default Constructor', 'cyan'))
    coord = NumCpp.CoordinateDouble()
    print(colored('\tPASS', 'green'))

    print(colored('Testing Degree Constructor', 'cyan'))
    raDegrees = np.random.rand(1).item() * 360
    ra = NumCpp.RaDouble(raDegrees)
    decDegrees = np.random.rand(1).item() * 180 - 90
    dec = NumCpp.DecDouble(decDegrees)

    pyCoord = SkyCoord(raDegrees, decDegrees, unit=u.deg)
    cCoord = NumCpp.CoordinateDouble(raDegrees, decDegrees)
    if (cCoord.ra() == ra and
        cCoord.dec() == dec and
        round(cCoord.x(), 10) == round(pyCoord.cartesian.x.value, 10) and
        round(cCoord.y(), 10) == round(pyCoord.cartesian.y.value, 10) and
        round(cCoord.z(), 10) == round(pyCoord.cartesian.z.value, 10)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing Ra/Dec Constructor', 'cyan'))
    raDegrees = np.random.rand(1).item() * 360
    ra = NumCpp.RaDouble(raDegrees)
    decDegrees = np.random.rand(1).item() * 180 - 90
    dec = NumCpp.DecDouble(decDegrees)

    pyCoord = SkyCoord(raDegrees, decDegrees, unit=u.deg)
    cCoord = NumCpp.CoordinateDouble(ra, dec)
    if (cCoord.ra() == ra and
        cCoord.dec() == dec and
        round(cCoord.x(), 10) == round(pyCoord.cartesian.x.value, 10) and
        round(cCoord.y(), 10) == round(pyCoord.cartesian.y.value, 10) and
        round(cCoord.z(), 10) == round(pyCoord.cartesian.z.value, 10)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing x/y/z Constructor', 'cyan'))
    raDegrees = np.random.rand(1).item() * 360
    ra = NumCpp.RaDouble(raDegrees)
    decDegrees = np.random.rand(1).item() * 180 - 90
    dec = NumCpp.DecDouble(decDegrees)
    pyCoord = SkyCoord(raDegrees, decDegrees, unit=u.deg)
    cCoord = NumCpp.CoordinateDouble(pyCoord.cartesian.x.value, pyCoord.cartesian.y.value, pyCoord.cartesian.z.value)
    if (round(cCoord.ra().degrees(), 9) == round(ra.degrees(), 9) and
        round(cCoord.dec().degrees(), 9) == round(dec.degrees(), 9) and
        round(cCoord.x(), 9) == round(pyCoord.cartesian.x.value, 9) and
        round(cCoord.y(), 9) == round(pyCoord.cartesian.y.value, 9) and
        round(cCoord.z(), 9) == round(pyCoord.cartesian.z.value, 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing NdArray Constructor', 'cyan'))
    raDegrees = np.random.rand(1).item() * 360
    ra = NumCpp.RaDouble(raDegrees)
    decDegrees = np.random.rand(1).item() * 180 - 90
    dec = NumCpp.DecDouble(decDegrees)
    pyCoord = SkyCoord(raDegrees, decDegrees, unit=u.deg)
    vec = np.asarray([pyCoord.cartesian.x.value, pyCoord.cartesian.y.value, pyCoord.cartesian.z.value])
    cVec = NumCpp.NdArray(1, 3)
    cVec.setArray(vec)
    cCoord = NumCpp.CoordinateDouble(cVec)
    if (round(cCoord.ra().degrees(), 9) == round(ra.degrees(), 9) and
        round(cCoord.dec().degrees(), 9) == round(dec.degrees(), 9) and
        round(cCoord.x(), 9) == round(pyCoord.cartesian.x.value, 9) and
        round(cCoord.y(), 9) == round(pyCoord.cartesian.y.value, 9) and
        round(cCoord.z(), 9) == round(pyCoord.cartesian.z.value, 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing hms/dms Constructor', 'cyan'))
    raHours = np.random.randint(0, 24, [1,], dtype=np.uint8).item()
    raMinutes = np.random.randint(0, 60, [1, ], dtype=np.uint8).item()
    raSeconds = np.random.rand(1).astype(np.float32).item() * 60
    raDegreesPy = (raHours + raMinutes / 60 + raSeconds / 3600) * 15

    decSign = NumCpp.Sign.POSITIVE if np.random.randint(-1, 1) == 0 else NumCpp.Sign.NEGATIVE
    decDegrees = np.random.randint(0, 91, [1, ], dtype=np.uint8).item()
    decMinutes = np.random.randint(0, 60, [1, ], dtype=np.uint8).item()
    decSeconds = np.random.rand(1).astype(np.float32).item() * 60
    decDegreesPy = decDegrees + decMinutes / 60 + decSeconds / 3600
    if decSign == NumCpp.Sign.NEGATIVE:
        decDegreesPy *= -1

    cCoord = NumCpp.CoordinateDouble(raHours, raMinutes, raSeconds, decSign, decDegrees, decMinutes, decSeconds)
    cRa = cCoord.ra()
    cDec = cCoord.dec()
    pyCoord = SkyCoord(raDegreesPy, decDegreesPy, unit=u.deg)
    if (round(cRa.degrees(), 9) == round(raDegreesPy, 9) and
        cRa.hours() == raHours and
        cRa.minutes() == raMinutes and
        round(cRa.seconds(), 9) == round(raSeconds, 9) and
        cDec.sign() == decSign and
        round(cDec.degrees(), 9) == round(decDegreesPy, 9) and
        cDec.degreesWhole() == decDegrees and
        cDec.minutes() == decMinutes and
        round(cDec.seconds(), 9) == round(decSeconds, 9) and
        round(cCoord.x(), 9) == round(pyCoord.cartesian.x.value, 9) and
        round(cCoord.y(), 9) == round(pyCoord.cartesian.y.value, 9) and
        round(cCoord.z(), 9) == round(pyCoord.cartesian.z.value, 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing equality operator', 'cyan'))
    cCoord2 = NumCpp.CoordinateDouble(cCoord)
    if cCoord2 == cCoord:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing not equality operator', 'cyan'))
    raDegrees = np.random.rand(1).item() * 360
    decDegrees = np.random.rand(1).item() * 180 - 90
    cCoord2 = NumCpp.CoordinateDouble(raDegrees, decDegrees)
    if cCoord2 != cCoord:
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing xyz', 'cyan'))
    xyz = [cCoord.x(), cCoord.y(), cCoord.z()]
    if np.array_equal(cCoord.xyz().getNumpyArray().flatten(), xyz):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing degreeSeperation Coordinate', 'cyan'))
    pyCoord2 = SkyCoord(cCoord2.ra().degrees(), cCoord2.dec().degrees(), unit=u.deg)
    cDegSep = cCoord.degreeSeperation(cCoord2)
    pyDegSep = pyCoord.separation(pyCoord2).value
    if round(cDegSep, 9) == round(pyDegSep, 9):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing radianSeperation Coordinate', 'cyan'))
    cRadSep = cCoord.radianSeperation(cCoord2)
    pyRadSep = np.deg2rad(pyDegSep)
    if round(cRadSep, 9) == round(pyRadSep, 9):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing degreeSeperation Vector', 'cyan'))
    vec2 = np.asarray([pyCoord2.cartesian.x, pyCoord2.cartesian.y, pyCoord2.cartesian.z])
    cArray = NumCpp.NdArray(1, 3)
    cArray.setArray(vec2)
    cDegSep = cCoord.degreeSeperation(cArray)
    if round(cDegSep, 9) == round(pyDegSep, 9):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing radianSeperation Vector', 'cyan'))
    cArray = NumCpp.NdArray(1, 3)
    cArray.setArray(vec2)
    cDegSep = cCoord.radianSeperation(cArray)
    if round(cDegSep, 9) == round(pyRadSep, 9):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing print', 'cyan'))
    cCoord.print()
    print(colored('\tPASS', 'green'))
Exemplo n.º 8
0
def doTest():
    print(colored('Testing Linalg Module', 'magenta'))

    print(colored('Testing det: 2x2', 'cyan'))
    order = 2
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100,
                             [shape.rows, shape.cols]).astype(np.double)
    cArray.setArray(data)
    if round(NumCpp.det(cArray)) == round(np.linalg.det(data).item()):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing det: 3x3', 'cyan'))
    order = 3
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100,
                             [shape.rows, shape.cols]).astype(np.double)
    cArray.setArray(data)
    if round(NumCpp.det(cArray)) == round(np.linalg.det(data).item()):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing det: NxN', 'cyan'))
    order = np.random.randint(4, 8, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100,
                             [shape.rows, shape.cols]).astype(np.double)
    cArray.setArray(data)
    if round(NumCpp.det(cArray)) == round(np.linalg.det(data).item()):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing hat', 'cyan'))
    shape = NumCpp.Shape(1, 3)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(0, 100, [shape.rows, shape.cols]).flatten()
    cArray.setArray(data)
    if np.array_equal(NumCpp.hat(cArray), hat(data)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing inv', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    if np.array_equal(np.round(NumCpp.inv(cArray).getNumpyArray(), 9),
                      np.round(np.linalg.inv(data), 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing matrix_power: power = 0', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    if np.array_equal(
            NumCpp.matrix_power(cArray, 0).getNumpyArray(),
            np.linalg.matrix_power(data, 0)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing matrix_power: power = 1', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    if np.array_equal(
            NumCpp.matrix_power(cArray, 1).getNumpyArray(),
            np.linalg.matrix_power(data, 1)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing matrix_power: power = -1', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    if np.array_equal(
            np.round(NumCpp.matrix_power(cArray, -1).getNumpyArray(), 8),
            np.round(np.linalg.matrix_power(data, -1), 8)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing matrix_power: power > 1', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 5, [shape.rows, shape.cols]).astype(np.double)
    cArray.setArray(data)
    power = np.random.randint(2, 9, [
        1,
    ]).item()
    if np.array_equal(
            NumCpp.matrix_power(cArray, power).getNumpyArray(),
            np.linalg.matrix_power(data, power)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing matrix_power: power < -1', 'cyan'))
    order = np.random.randint(5, 50, [
        1,
    ]).item()
    shape = NumCpp.Shape(order)
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    power = np.random.randint(2, 9, [
        1,
    ]).item() * -1
    if np.array_equal(
            np.round(NumCpp.matrix_power(cArray, power).getNumpyArray(), 9),
            np.round(np.linalg.matrix_power(data, power), 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing multi_dot', 'cyan'))
    shapeInput = np.random.randint(5, 50, [
        2,
    ])
    shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    shape2 = NumCpp.Shape(shape1.cols,
                          np.random.randint(5, 50, [
                              1,
                          ]).item())
    shape3 = NumCpp.Shape(shape2.cols,
                          np.random.randint(5, 50, [
                              1,
                          ]).item())
    shape4 = NumCpp.Shape(shape3.cols,
                          np.random.randint(5, 50, [
                              1,
                          ]).item())
    cArray1 = NumCpp.NdArray(shape1)
    cArray2 = NumCpp.NdArray(shape2)
    cArray3 = NumCpp.NdArray(shape3)
    cArray4 = NumCpp.NdArray(shape4)
    data1 = np.random.randint(1, 10, [shape1.rows, shape1.cols])
    data2 = np.random.randint(1, 10, [shape2.rows, shape2.cols])
    data3 = np.random.randint(1, 10, [shape3.rows, shape3.cols])
    data4 = np.random.randint(1, 10, [shape4.rows, shape4.cols])
    cArray1.setArray(data1)
    cArray2.setArray(data2)
    cArray3.setArray(data3)
    cArray4.setArray(data4)
    if np.array_equal(
            np.round(NumCpp.multi_dot(cArray1, cArray2, cArray3, cArray4), 9),
            np.round(np.linalg.multi_dot([data1, data2, data3, data4]), 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing lstsq', 'cyan'))
    shapeInput = np.random.randint(5, 50, [
        2,
    ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    aArray = NumCpp.NdArray(shape)
    bArray = NumCpp.NdArray(1, shape.rows)
    aData = np.random.randint(1, 100, [shape.rows, shape.cols])
    bData = np.random.randint(1, 100, [
        shape.rows,
    ])
    aArray.setArray(aData)
    bArray.setArray(bData)
    x = NumCpp.lstsq(aArray, bArray, 1e-12).getNumpyArray().flatten()
    if np.array_equal(
            np.round(x, 9),
            np.round(np.linalg.lstsq(aData, bData, rcond=None)[0], 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))

    print(colored('Testing svd', 'cyan'))
    shapeInput = np.random.randint(5, 50, [
        2,
    ])
    shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
    cArray = NumCpp.NdArray(shape)
    data = np.random.randint(1, 100, [shape.rows, shape.cols])
    cArray.setArray(data)
    uArray = NumCpp.NdArray()
    sArray = NumCpp.NdArray()
    vArray = NumCpp.NdArray()
    NumCpp.svd(cArray, uArray, sArray, vArray)
    data2 = np.dot(uArray.getNumpyArray(),
                   np.dot(sArray.getNumpyArray(), vArray.getNumpyArray()))
    if np.array_equal(np.round(data, 9), np.round(data2, 9)):
        print(colored('\tPASS', 'green'))
    else:
        print(colored('\tFAIL', 'red'))