Exemplo n.º 1
0
    def test_extract_simple(self) -> None:
        # Verify true behavior
        expression = cst.parse_expression("a + b[c], d(e, f * g)")
        nodes = m.extract(
            expression,
            m.Tuple(elements=[
                m.Element(
                    m.BinaryOperation(
                        left=m.SaveMatchedNode(m.Name(), "left"))),
                m.Element(m.Call()),
            ]),
        )
        extracted_node = cst.ensure_type(
            cst.ensure_type(expression, cst.Tuple).elements[0].value,
            cst.BinaryOperation,
        ).left
        self.assertEqual(nodes, {"left": extracted_node})

        # Verify false behavior
        nodes = m.extract(
            expression,
            m.Tuple(elements=[
                m.Element(
                    m.BinaryOperation(
                        left=m.SaveMatchedNode(m.Subscript(), "left"))),
                m.Element(m.Call()),
            ]),
        )
        self.assertIsNone(nodes)
class StripStringsCommand(VisitorBasedCodemodCommand):

    DESCRIPTION: str = (
        "Converts string type annotations to 3.7-compatible forward references."
    )

    METADATA_DEPENDENCIES = (QualifiedNameProvider, )

    # We want to gate the SimpleString visitor below to only SimpleStrings inside
    # an Annotation.
    @m.call_if_inside(m.Annotation())
    # We also want to gate the SimpleString visitor below to ensure that we don't
    # erroneously strip strings from a Literal.
    @m.call_if_not_inside(
        m.Subscript(
            # We could match on value=m.Name("Literal") here, but then we might miss
            # instances where people are importing typing_extensions directly, or
            # importing Literal as an alias.
            value=m.MatchMetadataIfTrue(
                QualifiedNameProvider,
                lambda qualnames: any(qualname.name ==
                                      "typing_extensions.Literal"
                                      for qualname in qualnames),
            )))
    def leave_SimpleString(
        self, original_node: libcst.SimpleString,
        updated_node: libcst.SimpleString
    ) -> Union[libcst.SimpleString, libcst.BaseExpression]:
        AddImportsVisitor.add_needed_import(self.context, "__future__",
                                            "annotations")
        # Just use LibCST to evaluate the expression itself, and insert that as the
        # annotation.
        return parse_expression(updated_node.evaluated_value,
                                config=self.module.config_for_parsing)
Exemplo n.º 3
0
    def test_extract_sequence_element(self) -> None:
        # Verify true behavior
        expression = cst.parse_expression("a + b[c], d(e, f * g, h.i.j)")
        nodes = m.extract(
            expression,
            m.Tuple(elements=[
                m.DoNotCare(),
                m.Element(
                    m.Call(args=[m.SaveMatchedNode(m.ZeroOrMore(), "args")])),
            ]),
        )
        extracted_seq = cst.ensure_type(
            cst.ensure_type(expression, cst.Tuple).elements[1].value,
            cst.Call).args
        self.assertEqual(nodes, {"args": extracted_seq})

        # Verify false behavior
        nodes = m.extract(
            expression,
            m.Tuple(elements=[
                m.DoNotCare(),
                m.Element(
                    m.Call(args=[
                        m.SaveMatchedNode(m.ZeroOrMore(m.Arg(m.Subscript())),
                                          "args")
                    ])),
            ]),
        )
        self.assertIsNone(nodes)
Exemplo n.º 4
0
 def flatten_literal_subscript(self, _, updated_node):
     new_slice = []
     for item in updated_node.slice:
         if m.matches(item.slice.value, m.Subscript(m.Name("Literal"))):
             new_slice += item.slice.value.slice
         else:
             new_slice.append(item)
     return updated_node.with_changes(slice=new_slice)
Exemplo n.º 5
0
class SimplifyUnionsTransformer(m.MatcherDecoratableTransformer):
    @m.leave(m.Subscript(m.Name("Union")))
    def _leave_union(self, original_node: cst.Subscript,
                     updated_node: cst.Subscript) -> cst.BaseExpression:
        if len(updated_node.slice) == 1:
            # This is a Union[SimpleType,] which is equivalent to just SimpleType
            return cst.ensure_type(updated_node.slice[0].slice,
                                   cst.Index).value
        return updated_node
Exemplo n.º 6
0
 def flatten_union_subscript(self, _, updated_node):
     new_slice = []
     has_none = False
     for item in updated_node.slice:
         if m.matches(item.slice.value, m.Subscript(m.Name("Optional"))):
             new_slice += item.slice.value.slice  # peel off "Optional"
             has_none = True
         elif m.matches(item.slice.value,
                        m.Subscript(m.Name("Union"))) and m.matches(
                            updated_node.value, item.slice.value.value):
             new_slice += item.slice.value.slice  # peel off "Union" or "Literal"
         elif m.matches(item.slice.value, m.Name("None")):
             has_none = True
         else:
             new_slice.append(item)
     if has_none:
         new_slice.append(
             cst.SubscriptElement(slice=cst.Index(cst.Name("None"))))
     return updated_node.with_changes(slice=new_slice)
Exemplo n.º 7
0
 def _is_awaitable_callable(annotation: str) -> bool:
     if not (annotation.startswith("typing.Callable")
             or annotation.startswith("typing.ClassMethod")
             or annotation.startswith("StaticMethod")):
         # Exit early if this is not even a `typing.Callable` annotation.
         return False
     try:
         # Wrap this in a try-except since the type annotation may not be parse-able as a module.
         # If it is not parse-able, we know it's not what we are looking for anyway, so return `False`.
         parsed_ann = cst.parse_module(annotation)
     except Exception:
         return False
     # If passed annotation does not match the expected annotation structure for a `typing.Callable` with
     # typing.Coroutine as the return type, matched_callable_ann will simply be `None`.
     # The expected structure of an awaitable callable annotation from Pyre is: typing.Callable()[[...], typing.Coroutine[...]]
     matched_callable_ann: Optional[Dict[str, Union[
         Sequence[cst.CSTNode], cst.CSTNode]]] = m.extract(
             parsed_ann,
             m.Module(body=[
                 m.SimpleStatementLine(body=[
                     m.Expr(value=m.Subscript(slice=[
                         m.SubscriptElement(),
                         m.SubscriptElement(slice=m.Index(value=m.Subscript(
                             value=m.SaveMatchedNode(
                                 m.Attribute(),
                                 "base_return_type",
                             )))),
                     ], ))
                 ]),
             ]),
         )
     if (matched_callable_ann is not None
             and "base_return_type" in matched_callable_ann):
         base_return_type = get_full_name_for_node(
             cst.ensure_type(matched_callable_ann["base_return_type"],
                             cst.CSTNode))
         return (base_return_type is not None
                 and base_return_type == "typing.Coroutine")
     return False
Exemplo n.º 8
0
class StripStringsCommand(VisitorBasedCodemodCommand):

    DESCRIPTION: str = "Converts string type annotations to 3.7-compatible forward references."

    @m.call_if_inside(m.Annotation())
    @m.call_if_not_inside(m.Subscript(m.Name("Literal")))
    def leave_SimpleString(
        self, original_node: libcst.SimpleString, updated_node: libcst.SimpleString
    ) -> Union[libcst.SimpleString, libcst.BaseExpression]:
        AddImportsVisitor.add_needed_import(self.context, "__future__", "annotations")
        return parse_expression(
            literal_eval(updated_node.value), config=self.module.config_for_parsing
        )
Exemplo n.º 9
0
class SimplifyUnionsTransformer(m.MatcherDecoratableTransformer):
    @m.leave(m.Subscript(m.Name("Union")))
    def _leave_union(self, original_node: cst.Subscript,
                     updated_node: cst.Subscript) -> cst.BaseExpression:
        slc = updated_node.slice
        # TODO: We can remove the instance check after ExtSlice is deprecated.
        if isinstance(slc, (cst.Slice, cst.Index)):
            # This is deprecated, so lets not support it.
            raise Exception("Unexpected Slice in Union!")
        if len(slc) == 1:
            # This is a Union[SimpleType,] which is equivalent to
            # just SimpleType
            return cst.ensure_type(slc[0].slice, cst.Index).value
        return updated_node
Exemplo n.º 10
0
 def visit_Subscript(self, node: cst.Subscript) -> None:
     if not self.has_future_annotations_import:
         return
     if self.in_annotation:
         if m.matches(
                 node,
                 m.Subscript(metadata=m.MatchMetadataIfTrue(
                     QualifiedNameProvider,
                     lambda qualnames: any(n.name ==
                                           "typing_extensions.Literal"
                                           for n in qualnames),
                 )),
                 metadata_resolver=self.context.wrapper,
         ):
             self.in_literal.add(node)
Exemplo n.º 11
0
    def leave_SubscriptElement(self, original_node: cst.SubscriptElement,
                               updated_node: cst.SubscriptElement):
        if self.type_annot_visited and self.parametric_type_annot_visited:
            if match.matches(
                    original_node,
                    match.SubscriptElement(slice=match.Index(
                        value=match.Subscript()))):
                q_name, _ = self.__get_qualified_name(
                    original_node.slice.value.value)
                if q_name is not None:
                    return updated_node.with_changes(slice=cst.Index(
                        value=cst.Subscript(
                            value=self.__name2annotation(q_name).annotation,
                            slice=updated_node.slice.value.slice)))
            elif match.matches(
                    original_node,
                    match.SubscriptElement(slice=match.Index(
                        value=match.Ellipsis()))):
                # TODO: Should the original node be returned?!
                return updated_node.with_changes(slice=cst.Index(
                    value=cst.Ellipsis()))
            elif match.matches(
                    original_node,
                    match.SubscriptElement(slice=match.Index(
                        value=match.SimpleString(value=match.DoNotCare())))):
                return updated_node.with_changes(slice=cst.Index(
                    value=updated_node.slice.value))
            elif match.matches(
                    original_node,
                    match.SubscriptElement(slice=match.Index(value=match.Name(
                        value='None')))):
                return original_node
            elif match.matches(
                    original_node,
                    match.SubscriptElement(slice=match.Index(
                        value=match.List()))):
                return updated_node.with_changes(slice=cst.Index(
                    value=updated_node.slice.value))
            else:
                q_name, _ = self.__get_qualified_name(
                    original_node.slice.value)
                if q_name is not None:
                    return updated_node.with_changes(slice=cst.Index(
                        value=self.__name2annotation(q_name).annotation))

        return original_node
 def contains_union_with_none(self, node: cst.Annotation) -> bool:
     return m.matches(
         node,
         m.Annotation(
             m.Subscript(
                 value=m.Name("Union"),
                 slice=m.OneOf(
                     [
                         m.SubscriptElement(m.Index()),
                         m.SubscriptElement(m.Index(m.Name("None"))),
                     ],
                     [
                         m.SubscriptElement(m.Index(m.Name("None"))),
                         m.SubscriptElement(m.Index()),
                     ],
                 ),
             )),
     )
Exemplo n.º 13
0
    def leave_Attribute(self, original_node: cst.Attribute,
                        updated_node: cst.Attribute):
        self.attribute_stack.pop()

        # x.y. z
        tail = updated_node.value
        head = updated_node.attr

        attrs = split_attribute(tail)

        # Обфускация метода/поля
        if m.matches(head, m.Name()):
            head = cst.ensure_type(head, cst.Name)
            updated_node = self.obf_var(head, updated_node)

        elif m.matches(head, m.Call()):
            head = cst.ensure_type(head, cst.Call)
            updated_node = self.obf_function_name(head, updated_node)

        else:
            pass

        # Обфускация имени
        if m.matches(tail, m.Name()):
            tail = cst.ensure_type(tail, cst.Name)
            if self.can_rename(tail.value, 'v', 'a', 'ca'):
                updated_node = updated_node.with_changes(
                    value=self.get_new_cst_name(tail.value))

        elif m.matches(tail, m.Subscript()):
            tail = cst.ensure_type(tail, cst.Subscript)

        else:
            pass

        return updated_node
Exemplo n.º 14
0
class ShedFixers(VisitorBasedCodemodCommand):
    """Fix a variety of small problems.

    Replaces `raise NotImplemented` with `raise NotImplementedError`,
    and converts always-failing assert statements to explicit `raise` statements.

    Also includes code closely modelled on pybetter's fixers, because it's
    considerably faster to run all transforms in a single pass if possible.
    """

    DESCRIPTION = "Fix a variety of style, performance, and correctness issues."

    @m.call_if_inside(m.Raise(exc=m.Name(value="NotImplemented")))
    def leave_Name(self, _, updated_node):  # noqa
        return updated_node.with_changes(value="NotImplementedError")

    def leave_Assert(self, _, updated_node):  # noqa
        test_code = cst.Module("").code_for_node(updated_node.test)
        try:
            test_literal = literal_eval(test_code)
        except Exception:
            return updated_node
        if test_literal:
            return cst.RemovalSentinel.REMOVE
        if updated_node.msg is None:
            return cst.Raise(cst.Name("AssertionError"))
        return cst.Raise(
            cst.Call(cst.Name("AssertionError"),
                     args=[cst.Arg(updated_node.msg)]))

    @m.leave(
        m.ComparisonTarget(comparator=oneof_names("None", "False", "True"),
                           operator=m.Equal()))
    def convert_none_cmp(self, _, updated_node):
        """Inspired by Pybetter."""
        return updated_node.with_changes(operator=cst.Is())

    @m.leave(
        m.UnaryOperation(
            operator=m.Not(),
            expression=m.Comparison(
                comparisons=[m.ComparisonTarget(operator=m.In())]),
        ))
    def replace_not_in_condition(self, _, updated_node):
        """Also inspired by Pybetter."""
        expr = cst.ensure_type(updated_node.expression, cst.Comparison)
        return cst.Comparison(
            left=expr.left,
            lpar=updated_node.lpar,
            rpar=updated_node.rpar,
            comparisons=[
                expr.comparisons[0].with_changes(operator=cst.NotIn())
            ],
        )

    @m.leave(
        m.Call(
            lpar=[m.AtLeastN(n=1, matcher=m.LeftParen())],
            rpar=[m.AtLeastN(n=1, matcher=m.RightParen())],
        ))
    def remove_pointless_parens_around_call(self, _, updated_node):
        # This is *probably* valid, but we might have e.g. a multi-line parenthesised
        # chain of attribute accesses ("fluent interface"), where we need the parens.
        noparens = updated_node.with_changes(lpar=[], rpar=[])
        try:
            compile(self.module.code_for_node(noparens), "<string>", "eval")
            return noparens
        except SyntaxError:
            return updated_node

    # The following methods fix https://pypi.org/project/flake8-comprehensions/

    @m.leave(m.Call(func=m.Name("list"), args=[m.Arg(m.GeneratorExp())]))
    def replace_generator_in_call_with_comprehension(self, _, updated_node):
        """Fix flake8-comprehensions C400-402 and 403-404.

        C400-402: Unnecessary generator - rewrite as a <list/set/dict> comprehension.
        Note that set and dict conversions are handled by pyupgrade!
        """
        return cst.ListComp(elt=updated_node.args[0].value.elt,
                            for_in=updated_node.args[0].value.for_in)

    @m.leave(
        m.Call(func=m.Name("list"), args=[m.Arg(m.ListComp(), star="")])
        | m.Call(func=m.Name("set"), args=[m.Arg(m.SetComp(), star="")])
        | m.Call(
            func=m.Name("list"),
            args=[m.Arg(m.Call(func=oneof_names("sorted", "list")), star="")],
        ))
    def replace_unnecessary_list_around_sorted(self, _, updated_node):
        """Fix flake8-comprehensions C411 and C413.

        Unnecessary <list/reversed> call around sorted().

        Also covers C411 Unnecessary list call around list comprehension
        for lists and sets.
        """
        return updated_node.args[0].value

    @m.leave(
        m.Call(
            func=m.Name("reversed"),
            args=[m.Arg(m.Call(func=m.Name("sorted")), star="")],
        ))
    def replace_unnecessary_reversed_around_sorted(self, _, updated_node):
        """Fix flake8-comprehensions C413.

        Unnecessary reversed call around sorted().
        """
        call = updated_node.args[0].value
        args = list(call.args)
        for i, arg in enumerate(args):
            if m.matches(arg.keyword, m.Name("reverse")):
                try:
                    val = bool(
                        literal_eval(self.module.code_for_node(arg.value)))
                except Exception:
                    args[i] = arg.with_changes(
                        value=cst.UnaryOperation(cst.Not(), arg.value))
                else:
                    if not val:
                        args[i] = arg.with_changes(value=cst.Name("True"))
                    else:
                        del args[i]
                        args[i - 1] = remove_trailing_comma(args[i - 1])
                break
        else:
            args.append(
                cst.Arg(keyword=cst.Name("reverse"), value=cst.Name("True")))
        return call.with_changes(args=args)

    _sets = oneof_names("set", "frozenset")
    _seqs = oneof_names("list", "reversed", "sorted", "tuple")

    @m.leave(
        m.Call(func=_sets, args=[m.Arg(m.Call(func=_sets | _seqs), star="")])
        | m.Call(
            func=oneof_names("list", "tuple"),
            args=[m.Arg(m.Call(func=oneof_names("list", "tuple")), star="")],
        )
        | m.Call(
            func=m.Name("sorted"),
            args=[m.Arg(m.Call(func=_seqs), star=""),
                  m.ZeroOrMore()],
        ))
    def replace_unnecessary_nested_calls(self, _, updated_node):
        """Fix flake8-comprehensions C414.

        Unnecessary <list/reversed/sorted/tuple> call within <list/set/sorted/tuple>()..
        """
        return updated_node.with_changes(
            args=[cst.Arg(updated_node.args[0].value.args[0].value)] +
            list(updated_node.args[1:]), )

    @m.leave(
        m.Call(
            func=oneof_names("reversed", "set", "sorted"),
            args=[
                m.Arg(m.Subscript(slice=[m.SubscriptElement(ALL_ELEMS_SLICE)]))
            ],
        ))
    def replace_unnecessary_subscript_reversal(self, _, updated_node):
        """Fix flake8-comprehensions C415.

        Unnecessary subscript reversal of iterable within <reversed/set/sorted>().
        """
        return updated_node.with_changes(
            args=[cst.Arg(updated_node.args[0].value.value)], )

    @m.leave(
        multi(
            m.ListComp,
            m.SetComp,
            elt=m.Name(),
            for_in=m.CompFor(target=m.Name(),
                             ifs=[],
                             inner_for_in=None,
                             asynchronous=None),
        ))
    def replace_unnecessary_listcomp_or_setcomp(self, _, updated_node):
        """Fix flake8-comprehensions C416.

        Unnecessary <list/set> comprehension - rewrite using <list/set>().
        """
        if updated_node.elt.value == updated_node.for_in.target.value:
            func = cst.Name(
                "list" if isinstance(updated_node, cst.ListComp) else "set")
            return cst.Call(func=func,
                            args=[cst.Arg(updated_node.for_in.iter)])
        return updated_node

    @m.leave(m.Subscript(oneof_names("Union", "Literal")))
    def reorder_union_literal_contents_none_last(self, _, updated_node):
        subscript = list(updated_node.slice)
        try:
            subscript.sort(key=lambda elt: elt.slice.value.value == "None")
            subscript[-1] = remove_trailing_comma(subscript[-1])
            return updated_node.with_changes(slice=subscript)
        except Exception:  # Single-element literals are not slices, etc.
            return updated_node

    @m.call_if_inside(m.Annotation(annotation=m.BinaryOperation()))
    @m.leave(
        m.BinaryOperation(
            left=m.Name("None") | m.BinaryOperation(),
            operator=m.BitOr(),
            right=m.DoNotCare(),
        ))
    def reorder_union_operator_contents_none_last(self, _, updated_node):
        def _has_none(node):
            if m.matches(node, m.Name("None")):
                return True
            elif m.matches(node, m.BinaryOperation()):
                return _has_none(node.left) or _has_none(node.right)
            else:
                return False

        node_left = updated_node.left
        if _has_none(node_left):
            return updated_node.with_changes(left=updated_node.right,
                                             right=node_left)
        else:
            return updated_node

    @m.leave(m.Subscript(value=m.Name("Literal")))
    def flatten_literal_subscript(self, _, updated_node):
        new_slice = []
        for item in updated_node.slice:
            if m.matches(item.slice.value, m.Subscript(m.Name("Literal"))):
                new_slice += item.slice.value.slice
            else:
                new_slice.append(item)
        return updated_node.with_changes(slice=new_slice)

    @m.leave(m.Subscript(value=m.Name("Union")))
    def flatten_union_subscript(self, _, updated_node):
        new_slice = []
        has_none = False
        for item in updated_node.slice:
            if m.matches(item.slice.value, m.Subscript(m.Name("Optional"))):
                new_slice += item.slice.value.slice  # peel off "Optional"
                has_none = True
            elif m.matches(item.slice.value,
                           m.Subscript(m.Name("Union"))) and m.matches(
                               updated_node.value, item.slice.value.value):
                new_slice += item.slice.value.slice  # peel off "Union" or "Literal"
            elif m.matches(item.slice.value, m.Name("None")):
                has_none = True
            else:
                new_slice.append(item)
        if has_none:
            new_slice.append(
                cst.SubscriptElement(slice=cst.Index(cst.Name("None"))))
        return updated_node.with_changes(slice=new_slice)

    @m.leave(m.Else(m.IndentedBlock([m.SimpleStatementLine([m.Pass()])])))
    def discard_empty_else_blocks(self, _, updated_node):
        # An `else: pass` block can always simply be discarded, and libcst ensures
        # that an Else node can only ever occur attached to an If, While, For, or Try
        # node; in each case `None` is the valid way to represent "no else block".
        if m.findall(updated_node, m.Comment()):
            return updated_node  # If there are any comments, keep the node
        return cst.RemoveFromParent()

    @m.leave(
        m.Lambda(params=m.MatchIfTrue(lambda node: (
            node.star_kwarg is None and not node.kwonly_params and not node.
            posonly_params and isinstance(node.star_arg, cst.MaybeSentinel) and
            all(param.default is None for param in node.params)))))
    def remove_lambda_indirection(self, _, updated_node):
        same_args = [
            m.Arg(m.Name(param.name.value), star="", keyword=None)
            for param in updated_node.params.params
        ]
        if m.matches(updated_node.body, m.Call(args=same_args)):
            return cst.ensure_type(updated_node.body, cst.Call).func
        return updated_node

    @m.leave(
        m.BooleanOperation(
            left=m.Call(m.Name("isinstance"), [m.Arg(), m.Arg()]),
            operator=m.Or(),
            right=m.Call(m.Name("isinstance"), [m.Arg(), m.Arg()]),
        ))
    def collapse_isinstance_checks(self, _, updated_node):
        left_target, left_type = updated_node.left.args
        right_target, right_type = updated_node.right.args
        if left_target.deep_equals(right_target):
            merged_type = cst.Arg(
                cst.Tuple([
                    cst.Element(left_type.value),
                    cst.Element(right_type.value)
                ]))
            return updated_node.left.with_changes(
                args=[left_target, merged_type])
        return updated_node
Exemplo n.º 15
0
    def obf_universal(self, node: cst.CSTNode, *types):

        if m.matches(node, m.Name()):
            types = ('a', 'ca', 'v', 'cv') if not types else types
            node = cst.ensure_type(node, cst.Name)
            if self.can_rename(node.value, *types):
                node = self.get_new_cst_name(node)

        elif m.matches(node, m.NameItem()):
            node = cst.ensure_type(node, cst.NameItem)
            node = node.with_changes(name=self.obf_universal(node.name))

        elif m.matches(node, m.Call()):

            node = cst.ensure_type(node, cst.Call)
            if self.change_methods or self.change_functions:
                node = self.new_obf_function_name(node)
            if self.change_arguments or self.change_method_arguments:
                node = self.obf_function_args(node)

        elif m.matches(node, m.Attribute()):
            node = cst.ensure_type(node, cst.Attribute)
            value = node.value
            attr = node.attr

            self.obf_universal(value)
            self.obf_universal(attr)

        elif m.matches(node, m.AssignTarget()):
            node = cst.ensure_type(node, cst.AssignTarget)
            node = node.with_changes(target=self.obf_universal(node.target))

        elif m.matches(node, m.List() | m.Tuple()):
            node = cst.ensure_type(node, cst.List) if m.matches(
                node, m.List()) else cst.ensure_type(node, cst.Tuple)
            new_elements = []
            for el in node.elements:
                new_elements.append(self.obf_universal(el))
            node = node.with_changes(elements=new_elements)
        elif m.matches(node, m.Subscript()):
            node = cst.ensure_type(node, cst.Subscript)
            new_slice = []
            for el in node.slice:
                new_slice.append(
                    el.with_changes(slice=self.obf_slice(el.slice)))
            node = node.with_changes(slice=new_slice)
            node = node.with_changes(value=self.obf_universal(node.value))
        elif m.matches(node, m.Element()):
            node = cst.ensure_type(node, cst.Element)
            node = node.with_changes(value=self.obf_universal(node.value))

        elif m.matches(node, m.Dict()):
            node = cst.ensure_type(node, cst.Dict)
            new_elements = []
            for el in node.elements:
                new_elements.append(self.obf_universal(el))
            node = node.with_changes(elements=new_elements)
        elif m.matches(node, m.DictElement()):
            node = cst.ensure_type(node, cst.DictElement)
            new_key = self.obf_universal(node.key)
            new_val = self.obf_universal(node.value)
            node = node.with_changes(key=new_key, value=new_val)
        elif m.matches(node, m.StarredDictElement()):
            node = cst.ensure_type(node, cst.StarredDictElement)
            node = node.with_changes(value=self.obf_universal(node.value))

        elif m.matches(node, m.If() | m.While()):
            node = cst.ensure_type(node, cst.IfExp) if m.matches(
                node, cst.If
                | cst.IfExp) else cst.ensure_type(node, cst.While)
            node = node.with_changes(test=self.obf_universal(node.test))
        elif m.matches(node, m.IfExp()):
            node = cst.ensure_type(node, cst.IfExp)
            node = node.with_changes(body=self.obf_universal(node.body))
            node = node.with_changes(test=self.obf_universal(node.test))
            node = node.with_changes(orelse=self.obf_universal(node.orelse))

        elif m.matches(node, m.Comparison()):
            node = cst.ensure_type(node, cst.Comparison)
            new_compars = []
            for target in node.comparisons:
                new_compars.append(self.obf_universal(target))

            node = node.with_changes(left=self.obf_universal(node.left))
            node = node.with_changes(comparisons=new_compars)
        elif m.matches(node, m.ComparisonTarget()):
            node = cst.ensure_type(node, cst.ComparisonTarget)
            node = node.with_changes(
                comparator=self.obf_universal(node.comparator))

        elif m.matches(node, m.FormattedString()):
            node = cst.ensure_type(node, cst.FormattedString)
            new_parts = []
            for part in node.parts:
                new_parts.append(self.obf_universal(part))
            node = node.with_changes(parts=new_parts)
        elif m.matches(node, m.FormattedStringExpression()):
            node = cst.ensure_type(node, cst.FormattedStringExpression)
            node = node.with_changes(
                expression=self.obf_universal(node.expression))

        elif m.matches(node, m.BinaryOperation() | m.BooleanOperation()):
            node = cst.ensure_type(node, cst.BinaryOperation) if m.matches(
                node, m.BinaryOperation()) else cst.ensure_type(
                    node, cst.BooleanOperation)
            node = node.with_changes(left=self.obf_universal(node.left),
                                     right=self.obf_universal(node.right))
        elif m.matches(node, m.UnaryOperation()):
            node = cst.ensure_type(node, cst.UnaryOperation)
            node = node.with_changes(
                expression=self.obf_universal(node.expression))

        elif m.matches(node, m.ListComp()):
            node = cst.ensure_type(node, cst.ListComp)
            node = node.with_changes(elt=self.obf_universal(node.elt))
            node = node.with_changes(for_in=self.obf_universal(node.for_in))

        elif m.matches(node, m.DictComp()):
            node = cst.ensure_type(node, cst.DictComp)
            node = node.with_changes(key=self.obf_universal(node.key))
            node = node.with_changes(value=self.obf_universal(node.value))
            node = node.with_changes(for_in=self.obf_universal(node.for_in))

        elif m.matches(node, m.CompFor()):
            node = cst.ensure_type(node, cst.CompFor)
            new_ifs = []

            node = node.with_changes(target=self.obf_universal(node.target))
            node = node.with_changes(iter=self.obf_universal(node.iter))
            for el in node.ifs:
                new_ifs.append(self.obf_universal(el))
            node = node.with_changes(ifs=new_ifs)
        elif m.matches(node, m.CompIf()):
            node = cst.ensure_type(node, cst.CompIf)
            node = node.with_changes(test=self.obf_universal(node.test))

        elif m.matches(node, m.Integer() | m.Float() | m.SimpleString()):
            pass

        else:
            pass
            # print(node)

        return node
Exemplo n.º 16
0
def _find_generic_base(node: cst.ClassDef, ) -> Optional[cst.Arg]:
    for b in node.bases:
        if m.matches(b.value, m.Subscript(value=m.Name("Generic"))):
            return b