Exemplo n.º 1
0
def test_apply_mask_job(default_k2is, lt_ctx):
    mask = np.ones((1860, 2048))

    tileshape = Shape(
        (16, 930, 16),
        sig_dims=2,
    )
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=default_k2is.shape,
    )

    job = ApplyMasksJob(
        dataset=default_k2is,
        mask_factories=[lambda: mask],
        tiling_scheme=tiling_scheme,
    )
    out = job.get_result_buffer()

    executor = InlineJobExecutor()

    for tiles in executor.run_job(job):
        for tile in tiles:
            tile.reduce_into_result(out)

    results = lt_ctx.run(job)
    assert results[0].shape == (34 * 35, )
    # there should be _something_ in each result pixel
    for px in results[0].reshape((-1, )):
        assert not np.isclose(px, 0)
Exemplo n.º 2
0
def test_apply_mask_on_raw_job(default_blo, lt_ctx):
    mask = np.ones((144, 144))

    job = ApplyMasksJob(dataset=default_blo, mask_factories=[lambda: mask])
    out = job.get_result_buffer()

    executor = InlineJobExecutor()

    for tiles in executor.run_job(job):
        for tile in tiles:
            tile.reduce_into_result(out)

    results = lt_ctx.run(job)
    assert results[0].shape == (90 * 121, )
Exemplo n.º 3
0
def test_apply_mask_on_empad_job(default_empad, lt_ctx):
    mask = np.ones((128, 128))

    job = ApplyMasksJob(dataset=default_empad, mask_factories=[lambda: mask])
    out = job.get_result_buffer()

    executor = InlineJobExecutor()

    for tiles in executor.run_job(job):
        for tile in tiles:
            tile.reduce_into_result(out)

    results = lt_ctx.run(job)
    assert results[0].shape == (4 * 4,)
    assert np.count_nonzero(results[0]) > 0
Exemplo n.º 4
0
def test_apply_mask_on_raw_job(default_raw, lt_ctx):
    mask = np.ones((128, 128))

    job = ApplyMasksJob(dataset=default_raw, mask_factories=[lambda: mask])
    out = job.get_result_buffer()

    executor = InlineJobExecutor()

    for tiles in executor.run_job(job):
        for tile in tiles:
            tile.reduce_into_result(out)

    results = lt_ctx.run(job)
    # FIXME: should the result here be 1D or 2D?
    # currently, for inherently 4D datasets it is 2D, and for 3D datasets
    # it is 1D. make this consistent?
    assert results[0].shape == (16, 16)