Exemplo n.º 1
0
def stft_from_sig(
    sig_wf: np.ndarray, frequency_sample_rate_hz: float, band_order_Nth: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    """
    Librosa STFT is complex FFT grid, not power

    :param sig_wf: array with input signal
    :param frequency_sample_rate_hz: sample rate of frequency in Hz
    :param band_order_Nth: Nth order of constant Q bands
    :return: four numpy ndarrays with STFT, STFT_bits, time_stft_s, frequency_stft_hz
    """

    sig_duration_s = len(sig_wf) / frequency_sample_rate_hz
    _, min_frequency_hz = scales.from_duration(band_order_Nth, sig_duration_s)

    order_Nth, cycles_M, quality_Q, \
    frequency_center, frequency_start, frequency_end = \
        scales.frequency_bands_g2f1(scale_order_input=band_order_Nth,
                                    frequency_low_input=min_frequency_hz,
                                    frequency_sample_rate_input=frequency_sample_rate_hz)

    # Choose the spectral resolution as the key parameter
    frequency_resolution_min_hz = np.min(frequency_end - frequency_start)
    frequency_resolution_max_hz = np.max(frequency_end - frequency_start)
    frequency_resolution_hz_geo = np.sqrt(frequency_resolution_min_hz *
                                          frequency_resolution_max_hz)
    stft_time_duration_s = 1 / frequency_resolution_hz_geo
    stft_points_per_seg = int(frequency_sample_rate_hz * stft_time_duration_s)

    # From CQT
    stft_points_hop, _, _, _, _ = \
        scales.cqt_frequency_bands_g2f1(band_order_Nth,
                                        min_frequency_hz,
                                        frequency_sample_rate_hz,
                                        is_power_2=False)

    print('STFT Duration, NFFT, HOP:', len(sig_wf), stft_points_per_seg,
          stft_points_hop)

    STFT_Scaling = 2 * np.sqrt(np.pi) / stft_points_per_seg
    STFT = librosa.core.stft(sig_wf,
                             n_fft=stft_points_per_seg,
                             hop_length=stft_points_hop,
                             win_length=None,
                             window='hann',
                             center=True,
                             pad_mode='reflect')

    # Must be scaled to match scipy psd
    STFT *= STFT_Scaling
    STFT_bits = utils.log2epsilon(STFT)

    time_stft_s = librosa.times_like(STFT,
                                     sr=frequency_sample_rate_hz,
                                     hop_length=stft_points_hop)
    frequency_stft_hz = librosa.core.fft_frequencies(
        sr=frequency_sample_rate_hz, n_fft=stft_points_per_seg)

    return STFT, STFT_bits, time_stft_s, frequency_stft_hz
Exemplo n.º 2
0
    synthetics.antialias_halfNyquist(synth=sig_wf)

    # Export to wav directory
    if do_save_wave:
        wav_sample_rate_hz = 8000.
        export_filename = os.path.join(output_wav_directory,
                                       wav_filename + "_8kz.wav")
        synth_wav = 0.9 * np.real(sig_wf) / np.max(np.abs((np.real(sig_wf))))
        scipy.io.wavfile.write(export_filename, int(wav_sample_rate_hz),
                               synth_wav)

    # Frame to mic start and end and plot
    event_reference_time_epoch_s = sig_wf_epoch_s[0]

    # The min_frequency_hz is needed for STFT
    max_time_s, min_frequency_hz = scales.from_duration(
        band_order_Nth=order_number_input, sig_duration_s=sig_duration_s)
    print('\nRequest Order N=', order_number_input)
    print('Sweep duration, s:', sig_duration_s)
    print(
        'Lowest frequency in hz that can support this order for this signal duration is ',
        min_frequency_hz)
    print('Scale with signal duration and to Nyquist, default G2 base re F1')

    # TFR: Compute complex wavelet transform (cwt) by specifying the start and end center frequencies
    # and getting the n-1 band below it.

    cwt_frequency_high_hz = np.max(frequency_end_hz) * scale_edge**2
    cwt_frequency_low_hz = np.min(frequency_start_hz) / scale_edge
    print('Highest requested CWT frequency, Hz:', cwt_frequency_high_hz)
    print('Lowest  requested CWT frequency, Hz:', cwt_frequency_low_hz)
Exemplo n.º 3
0
def cqt_from_sig(
    sig_wf: np.ndarray,
    frequency_sample_rate_hz: float,
    band_order_Nth: float,
    cqt_window: str = 'hann',
    dictionary_type: str = "norm"
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    """
    Compute the constant-Q transform of a signal.

    :param sig_wf: array with input signal
    :param frequency_sample_rate_hz: sample rate of frequency in Hz
    :param band_order_Nth: Nth order of constant Q bands
    :param cqt_window: string, "cqt_gauss" or librosa window specification for the basis filter. Default is 'hann'
    :param dictionary_type: "tone" or "norm". Default is 'norm'
    :return: four numpy ndarrays with CQT, CQT_bits, time_cqt_s, frequency_cqt_hz
    """
    sig_duration_s = len(sig_wf) / frequency_sample_rate_hz
    min_scale_s, min_frequency_hz = scales.from_duration(
        band_order_Nth, sig_duration_s)

    # Match default cwt
    cqt_points_hop_min, frequency_hz_center_min, scale_number_bins, order_Nth, cqt_points_per_seg_max = \
        scales.cqt_frequency_bands_g2f1(band_order_Nth,
                                        min_frequency_hz,
                                        frequency_sample_rate_hz,
                                        is_power_2=False)

    print('CQT Duration, NFFT, HOP:', len(sig_wf), cqt_points_per_seg_max,
          cqt_points_hop_min)
    int_order_N = int(band_order_Nth)
    # CQT is not power
    if cqt_window == "cqt_gauss":
        CQT = librosa.core.cqt(sig_wf,
                               sr=frequency_sample_rate_hz,
                               hop_length=cqt_points_hop_min,
                               fmin=frequency_hz_center_min,
                               n_bins=scale_number_bins,
                               bins_per_octave=int_order_N,
                               tuning=0.0,
                               filter_scale=1,
                               norm=1,
                               sparsity=0.0,
                               window=q_gauss,
                               scale=True,
                               pad_mode='reflect')
    else:
        CQT = librosa.core.cqt(sig_wf,
                               sr=frequency_sample_rate_hz,
                               hop_length=cqt_points_hop_min,
                               fmin=frequency_hz_center_min,
                               n_bins=scale_number_bins,
                               bins_per_octave=int_order_N,
                               tuning=0.0,
                               filter_scale=1,
                               norm=1,
                               sparsity=0.0,
                               window=cqt_window,
                               scale=True,
                               pad_mode='reflect')

    time_cqt_s = librosa.times_like(CQT,
                                    sr=frequency_sample_rate_hz,
                                    hop_length=cqt_points_hop_min)
    frequency_cqt_hz = librosa.core.cqt_frequencies(
        scale_number_bins,
        frequency_hz_center_min,
        bins_per_octave=int_order_N,
        tuning=0.0)
    cqt_multiplier = cqt_scaling(band_order_Nth, frequency_cqt_hz,
                                 frequency_sample_rate_hz, CQT.shape,
                                 dictionary_type)
    CQT *= cqt_multiplier
    CQT_bits = utils.log2epsilon(CQT)

    return CQT, CQT_bits, time_cqt_s, frequency_cqt_hz