Exemplo n.º 1
0
 def initial_ipeps(self):
     dim = (self.d, ) + (self.chi, ) * self.nVirtual
     if self.iniWay is 'random':
         tensor = tm.symmetrical_rand_peps_tensor(self.d, self.chi,
                                                  self.nVirtual)
         if self.stateType is 'mixed':
             bond = (self.d0, self.d0) + (self.chi, ) * self.nVirtual
             tensor = tensor.reshape(bond)
             ind = (1, 0) + tuple(range(2, self.nVirtual + 2))
             tensor = (tensor + tensor.transpose(ind)) / 2
             bond = (self.d, ) + (self.chi, ) * self.nVirtual
             tensor = tensor.reshape(bond)
         for n in range(0, self.nTensor):
             self.tensors[n] = tensor.copy()
     elif self.iniWay is 'ones':
         for n in range(0, self.nTensor):
             self.tensors[n] = np.ones(dim)
     elif self.iniWay is 'id':
         if self.stateType is 'mixed':
             if self._is_debug:
                 if abs(self.d0**2 - self.d) > 1e-10:
                     bf.print_error('For mixed state, d should be as d0^2. '
                                    'Check self.d or self.stateType')
             for n in range(0, self.nTensor):
                 self.tensors[n] = np.eye(
                     self.d0).reshape((self.d, ) + (1, ) * self.nVirtual)
         else:
             bf.print_error('Initial way "id" is only for thermal states')
Exemplo n.º 2
0
 def check_consistency(self):
     if self.dataInfo['NumTotalTrain'] != sum(self.dataInfo['nClassNum']):
         bf.print_error('The total number in the dataset is NOT consistent '
                        'with the sum of the samples of all classes')
     for n in range(0, self.dataInfo['NumClass']):
         start = self.dataInfo['nStart'][n]
         end = start + self.dataInfo['nClassNum'][n]
         tmp = self.labels[start:end]
         if not np.prod(tmp == tmp[0]):
             bf.print_error('In the ' + str(tmp[0]) + '-th labels, not all labels are '
                            + str(tmp[0]))
             print(bf.arg_find_array(tmp != tmp[0]))
Exemplo n.º 3
0
 def initial_lm(self):
     lm = np.random.rand(self.chi, )
     lm /= np.linalg.norm(lm)
     if self.iniWay is 'random':
         for n in range(0, self.nLm):
             self.lm[n] = lm.copy()
     elif self.iniWay is 'ones':
         for n in range(0, self.nLm):
             self.tensors[n] = np.ones((self.chi, )) / (self.chi**0.5)
     elif self.iniWay is 'id':
         if self.stateType is 'mixed':
             for n in range(0, self.nLm):
                 self.lm[n] = np.ones(1, )
         else:
             bf.print_error('Initial way "id" is only for thermal states')
Exemplo n.º 4
0
 def find_pos_of_lm(self):
     self.lm_ten_bond = np.zeros((self.nLm, 2, 2), dtype=int)
     for n_lm in range(0, self.nLm):
         n_found = 0
         for n in range(0, self.nTensor):
             if n_lm in self.pos_lm[n]:
                 self.lm_ten_bond[n_lm, n_found, 0] = n
                 self.lm_ten_bond[n_lm, n_found,
                                  1] = self.pos_lm[n].index(n_lm)
                 n_found += 1
             if n_found == 2:
                 break
         if self._is_debug and n_found < 2:
             bf.print_error(
                 'In "find_pos_of_one_lm", n_found is ony %g. It should 2' %
                 n_found)
Exemplo n.º 5
0
 def __init__(self, data, parity=0):
     self.parity = parity
     if type(data) is dict:
         self.data = data
         one_data = data['00']
         self.ndim = one_data.ndim
         self.shape = [one_data.shape[n] * 2 for n in range(0, self.ndim)]
     else:
         self.ndim = data.ndim
         self.shape = list(data.shape)
         self.data = dict()
         self.normal_to_z2(data)
     for n in range(0, self.ndim):
         if self.shape[n] % 2 == 1:
             bf.print_error(
                 'DimError: for a Z2 tensor, all bond dimensions should be even'
             )
Exemplo n.º 6
0
    def images2vecs(self, classes, numbers, how='random'):
        self.vec_classes = classes
        num_class = classes.__len__()
        ntot = 0
        if numbers is None:
            numbers = ['all'] * num_class
        for n in range(0, num_class):
            if numbers[n] is 'all':
                ntot += self.dataInfo['nClassNum'][n]
            else:
                ntot += min(numbers[n], self.dataInfo['nClassNum'][n])
        self.numVecSample = ntot
        self.LabelNow = np.zeros((ntot,), dtype=int)
        self.tmp = np.zeros((self.length, ntot))

        n_now = 0
        for n in range(0, num_class):
            if numbers[n] is 'all':
                start = self.dataInfo['nStart'][n]
                end = start + self.dataInfo['nClassNum'][n]
                self.tmp[:, n_now:self.dataInfo['nClassNum'][n]] = self.images[:, start:end]
                self.LabelNow[n_now:self.dataInfo['nClassNum'][n]] = self.labels[start:end]
                n_now += self.dataInfo['nClassNum'][n]
            else:
                n_sample = numbers[n]
                start = self.dataInfo['nStart'][classes[n]]
                if n_sample >= self.dataInfo['nClassNum'][classes[n]]:
                    rand_p = range(start, self.dataInfo['nClassNum'][classes[n]] + start)
                elif how is 'random':
                    rand_p = np.random.permutation(self.dataInfo['nClassNum'][classes[n]])[
                             :n_sample] + start
                elif how is 'first':
                    rand_p = range(start, n_sample + start)
                else:
                    rand_p = range(self.dataInfo['nClassNum'][classes[n]] - n_sample + start,
                                   self.dataInfo['nClassNum'][classes[n]] + start)
                for ns in rand_p:
                    self.tmp[:, n_now] = self.images[:, ns]
                    self.LabelNow[n_now] = self.labels[ns]
                    n_now += 1
        self.multiple_images2vecs()
        self.clear_tmp_data()
        if is_debug and n_now != ntot:
            bf.print_error('In images2vecs_train_samples: total number of vectorized '
                           'images NOT consistent')
Exemplo n.º 7
0
    def one_bond_so_transformation(self, nt1, vb1, nt2, vb2):
        # Super-orthogonal transformation on one virtual bond
        # vb does NOT count the physical bond
        if self._is_debug:
            if self.pos_lm[nt1][vb1] != self.pos_lm[nt2][vb2]:
                bf.print_error(
                    'In one_bond_so_transformation, the two virtual bonds must'
                    'correspond to the same lambda')
        m1 = self.bond_env_matrix_simple(nt1, vb1)
        m2 = self.bond_env_matrix_simple(nt2, vb2)

        flag = False
        if self._is_debug:
            _lm = self.lm[self.pos_lm[nt1][vb1]].copy()
            flag = (self.chi == self.tensors[nt1].shape[vb1 + 1])
        u1, u2, self.lm[self.pos_lm[nt1]
                        [vb1]] = tm.transformation_from_env_mats(
                            m1,
                            m2,
                            self.lm[self.pos_lm[nt1][vb1]],
                            self.chi,
                            norm_way=1)[:3]
        if self._is_debug and flag:
            _tmp = u1.dot(np.diag(self.lm[self.pos_lm[nt1][vb1]])).dot(u2.T)
            err = np.linalg.norm(tm.off_diagonal_mat(_tmp).reshape(-1, ))
            if err > 1e-10:
                print(
                    'Warning of the transformations from environment: not diagonal (%g)'
                    % err)
            _tmp = np.diag(_tmp)
            _tmp = _tmp / np.linalg.norm(_tmp)
            err = np.linalg.norm(_tmp - self.lm[self.pos_lm[nt1][vb1]])
            if err > 1e-10:
                print(
                    'Warning of the transformations from environment: not recover lm (%g)'
                    % err)
            print(self.lm[self.pos_lm[nt1][vb1]])
        self.tensors[nt1] = tm.absorb_matrix2tensor(self.tensors[nt1], u1,
                                                    vb1 + 1)
        self.tensors[nt2] = tm.absorb_matrix2tensor(self.tensors[nt2], u2,
                                                    vb2 + 1)
        self.tensors[nt1] /= max(abs(self.tensors[nt1].reshape(-1, 1)))
        self.tensors[nt2] /= max(abs(self.tensors[nt2].reshape(-1, 1)))
        # self.lm[self.pos_lm[nt1][vb1]] = tm.normalize_tensor(self.lm[self.pos_lm[nt1][vb1]])[0]
        return m1, m2
Exemplo n.º 8
0
 def initial_lattice(self):
     # pos_lm[nt][nb]=x denotes the x-th lm locates at the nb-th bond of the nt-th tensor
     if self.lattice is 'honeycomb0':
         self.nTensor = 2
         self.nLm = 3
         self.nVirtual = 3
         # means for the 0-the tensor, it is the 0, 1, and 2-th lm on the three virtual bonds
         self.pos_lm = [[], []]
         self.pos_lm[0] = [0, 1, 2]
         self.pos_lm[1] = [0, 1, 2]
     elif self.lattice is 'honeycombTreeDMRG':
         # for tree DMRG of honeycomb lattice; the TN is square (one tensor with two spins)
         self.nTensor = 5
         self.nVirtual = 4
         self.d = self.d0**2
     else:
         bf.print_error('Incorrect input of the lattice')
     self.find_pos_of_lm()
Exemplo n.º 9
0
 def initial_lattice(self):
     # pos_lm[nt][nb]=x denotes the x-th lm locates at the nb-th bond of the nt-th tensor
     if self.lattice is 'honeycomb0':
         self.nTensor = 2
         self.nLm = 3
         self.nVirtual = 3
         # self.pos_lm[x] means for the x-th tensor, it is the 0, 1, and 2-th lm on the three virtual bonds
         self.pos_lm = [[], []]
         self.pos_lm[0] = [0, 1, 2]
         self.pos_lm[1] = [0, 1, 2]
     elif self.lattice is 'honeycombTreeDMRG':
         # for tree DMRG of honeycomb lattice; the TN is square (one tensor with two spins)
         self.nTensor = 5
         self.nVirtual = 4
         self.d = self.d0**2
     elif self.lattice in ['kagome', 'husimi']:
         self.nTensor = 2  # use symmetrical environment: only one orthogonal tensor
         self.nVirtual = 3
         self.d = self.d0
         self.stateType = 'pure'
     else:
         bf.print_error('Incorrect input of the lattice')
     self.find_pos_of_lm()
Exemplo n.º 10
0
 def rho_two_body_nlm_simple(self, n_lm):
     nt1 = self.lm_ten_bond[n_lm, 0, 0]
     vb1 = self.lm_ten_bond[n_lm, 0, 1]
     nt2 = self.lm_ten_bond[n_lm, 1, 0]
     vb2 = self.lm_ten_bond[n_lm, 1, 1]
     if self._is_debug:
         if n_lm != self.pos_lm[nt2][vb2]:
             bf.print_error(
                 'In rho_two_body_simple, the two virtual bonds must'
                 'correspond to the same lambda')
     bonds = list(range(0, self.nVirtual))
     bonds.remove(vb1)
     tmp1 = self.absorb_lm(nt1, False, bonds)
     tmp2 = self.absorb_lm(nt2, False, 'all')
     if self.stateType is 'pure':
         bonds = list(range(1, self.nVirtual + 1))
         bonds.remove(vb1 + 1)
         tmp1 = np.tensordot(tmp1.conj(), tmp1, (bonds, bonds))
         bonds = list(range(1, self.nVirtual + 1))
         bonds.remove(vb2 + 1)
         tmp2 = np.tensordot(tmp2.conj(), tmp2, (bonds, bonds))
     elif self.stateType is 'mixed':
         s = tmp1.shape
         bonds = list(range(1, self.nVirtual + 2))
         bonds.remove(vb1 + 2)
         tmp1 = tmp1.reshape((self.d0, self.d0) + s[1:])
         tmp1 = np.tensordot(tmp1.conj(), tmp1, (bonds, bonds))
         s = tmp2.shape
         bonds = list(range(1, self.nVirtual + 2))
         bonds.remove(vb2 + 2)
         tmp2 = tmp2.reshape((self.d0, self.d0) + s[1:])
         tmp2 = np.tensordot(tmp2.conj(), tmp2, (bonds, bonds))
     rho = tm.cont([tmp1, tmp2], [[-1, 1, -3, 2], [-2, 1, -4, 2]])
     rho = rho.reshape(self.d0 * self.d0, self.d0 * self.d0)
     rho = (rho + rho.conj().T) / 2
     rho /= np.trace(rho)
     return rho
Exemplo n.º 11
0
 def observe_by_features(self, features, pos):
     if len(pos) == self.length:
         bf.print_error(
             'Input features cannot be as many as the total features')
     features = np.array(features).reshape(-1, 1)
     features = self.map_to_vectors(features).squeeze()
     data_mps = self.mps.wrap_data()
     mps = MPS(self.length, self.d, self.chi)
     mps.refresh_mps_properties(data_mps)
     for n in range(np.array(pos).size):
         mps.mps[pos[n]] = np.tensordot(mps.mps[pos[n]], features[:, n],
                                        [[1], [0]])
     pos = np.sort(pos)
     for n in pos[::-1]:
         if n > 0:
             mps.mps[n - 1] = np.tensordot(mps.mps[n - 1], mps.mps[n],
                                           [[mps.mps[n - 1].ndim - 1], [0]])
         else:
             mps.mps[n + 1] = np.tensordot(mps.mps[n], mps.mps[n + 1],
                                           [[1], [0]])
         mps.mps.__delitem__(n)
     mps.refresh_mps_properties()
     mps.correct_orthogonal_center(0, normalize=True)
     return mps