Exemplo n.º 1
0
def main():
    # experiment, series id, x, y, z
    _tuples = [('SN16', 1, -1682.56, -5032.04, 3008.63),
               ('SN16', 2, -1670.75, -5478.9, 2994.73),
               ('SN16', 3, -236.84, -4688.53, 2936),
               ('SN16', 4, 220.026, -5278.16, 2996.12),
               ('SN16', 5, -116.687, -5416.64, 3011.1),
               ('SN16', 6, 182.096, -5594.65, 2973.24),
               ('SN16', 7, -348.477, -5602.94, 2941.42),
               ('SN16', 8, -2047.87, -6110.29, 2981.28),
               ('SN16', 9, -666.538, -6226.22, 2981.87),
               ('SN16', 10, -636.488, -4737.97, 3024.08),
               ('SN16', 11, -1876.03, -4453.93, 3027.78),
               ('SN16', 12, -458.544, -5354.8, 2959.91),
               ('SN16', 13, -874.443, -5466.59, 2934.34),
               ('SN16', 14, -967.547, -5734.82, 2971.74),
               ('SN16', 15, -700.906, -5530.6, 2986.42),
               ('SN16', 16, -1297.99, -5558.28, 2972.78),
               ('SN16', 17, -329.176, -5949.33, 3003.88),
               ('SN16', 18, -324.288, -6142.51, 3012.3),
               ('SN16', 19, -185.393, -6369.23, 3018.61),
               ('SN16', 20, -874.443, -5637.26, 2937.31),
               ('SN16', 21, 903.651, -4759.44, 2996.15)]

    for _tuple in _tuples:
        print(_tuple)
        _experiment, _series_id, _x, _y, _z = _tuple
        _properties = load.image_properties(_experiment, _series_id)
        _properties['position'] = {'x': _x, 'y': _y, 'z': _z}
        save.image_properties(_experiment, _series_id, _properties)
Exemplo n.º 2
0
def process_series(_experiment, _series_id, _overwrite=False):
    _series_image_path = paths.serieses(_experiment, _series_id)
    _image_properties = load.image_properties(_experiment, _series_id)
    _series_image = tifffile.imread(_series_image_path)
    _cells_coordinates = load.cell_coordinates_tracked_series_file_data(
        _experiment, _series_id)
    _series_image_by_time_frames = [
        np.array([
            _z[IMAGE_FIBER_CHANNEL_INDEX] for _z in _series_image[_time_frame]
        ]) for _time_frame in range(_series_image.shape[0])
    ]

    _tuples = load.experiment_groups_as_tuples(_experiment)
    _tuples = organize.by_experiment(_tuples)[_experiment]
    _tuples = filtering.by_real_pairs(_tuples)
    _tuples = filtering.by_real_fake_pairs(_tuples, _real_fake_pairs=False)
    _tuples = filtering.by_series_id(_tuples, _series_id)

    for _tuple in _tuples:
        _experiment, _series_id, _group = _tuple
        _cell_1_id, _cell_2_id = [
            int(_value) for _value in _group.split('_')[1:]
        ]
        process_group(
            _experiment=_experiment,
            _series_id=_series_id,
            _cells_coordinates=_cells_coordinates,
            _cell_1_id=_cell_1_id,
            _cell_2_id=_cell_2_id,
            _series_image_by_time_frames=_series_image_by_time_frames,
            _resolutions=_image_properties['resolutions'],
            _image_properties=_image_properties,
            _overwrite=_overwrite)
def process_fake_following(_experiment,
                           _series_id,
                           _cell_1_id,
                           _cell_2_id,
                           _x_change,
                           _y_change,
                           _z_change=0,
                           _overwrite=False):
    _series_image_path = paths.serieses(_experiment, _series_id)
    _image_properties = load.image_properties(_experiment, _series_id)
    _series_image = tifffile.imread(_series_image_path)
    _cells_coordinates = load.cell_coordinates_tracked_series_file_data(
        _experiment, _series_id)
    _series_image_by_time_frames = [
        np.array([
            _z[IMAGE_FIBER_CHANNEL_INDEX] for _z in _series_image[_time_frame]
        ]) for _time_frame in range(_series_image.shape[0])
    ]
    process_group(_experiment=_experiment,
                  _series_id=_series_id,
                  _cells_coordinates=_cells_coordinates,
                  _cell_1_id=_cell_1_id,
                  _cell_2_id=_cell_2_id,
                  _series_image_by_time_frames=_series_image_by_time_frames,
                  _resolutions=_image_properties['resolutions'],
                  _real_cells=False,
                  _x_change=_x_change,
                  _y_change=_y_change,
                  _z_change=_z_change,
                  _overwrite=_overwrite)
Exemplo n.º 4
0
def by_dead_live(_experiments_tuples, _dead=None, _live=None):
    _experiments_tuples_filtered = []
    for _tuple in _experiments_tuples:
        _experiment, _series_id, _group = _tuple
        _group_split = _group.split('_')
        _cell_id_1 = int(_group_split[1])
        _cell_id_2 = int(_group_split[2])
        _properties = load.image_properties(_experiment, _series_id)

        _cell_1_dead = _cell_id_1 in _properties['dead_cell_ids']
        _cell_2_dead = _cell_id_2 in _properties['dead_cell_ids']

        # both dead
        if _dead and not _live and _cell_1_dead and _cell_2_dead:
            _experiments_tuples_filtered.append(_tuple)
        # both live
        elif not _dead and _live and not _cell_1_dead and not _cell_2_dead:
            _experiments_tuples_filtered.append(_tuple)
        # at least one is dead
        elif _dead and _live is None and (_cell_1_dead or _cell_2_dead):
            _experiments_tuples_filtered.append(_tuple)
        # at least one is alive
        elif _dead is None and _live and (not _cell_1_dead
                                          or not _cell_2_dead):
            _experiments_tuples_filtered.append(_tuple)
        # one is dead, one is alive
        elif _dead and _live and ((_cell_1_dead and not _cell_2_dead) or
                                  (not _cell_1_dead and _cell_2_dead)):
            _experiments_tuples_filtered.append(_tuple)
        # return all
        elif _dead is None and _live is None:
            return _experiments_tuples

    return _experiments_tuples_filtered
def process_fake_static(_experiment,
                        _series_id,
                        _cell_1_id,
                        _cell_2_id,
                        _x1,
                        _y1,
                        _z1,
                        _x2,
                        _y2,
                        _z2,
                        _overwrite=False):
    _series_image_path = paths.serieses(_experiment, _series_id)
    _image_properties = load.image_properties(_experiment, _series_id)
    _series_image = tifffile.imread(_series_image_path)
    _cells_coordinates = [[
        (_x1, _y1, _z1) for _time_frame in range(_series_image.shape[0])
    ], [(_x2, _y2, _z2) for _time_frame in range(_series_image.shape[0])]]
    _series_image_by_time_frames = [
        np.array([
            _z[IMAGE_FIBER_CHANNEL_INDEX] for _z in _series_image[_time_frame]
        ]) for _time_frame in range(_series_image.shape[0])
    ]
    process_group(_experiment=_experiment,
                  _series_id=_series_id,
                  _cells_coordinates=_cells_coordinates,
                  _cell_1_id=0,
                  _cell_2_id=1,
                  _series_image_by_time_frames=_series_image_by_time_frames,
                  _resolutions=_image_properties['resolutions'],
                  _real_cells=False,
                  _fake_cell_1_id=_cell_1_id,
                  _fake_cell_2_id=_cell_2_id,
                  _overwrite=_overwrite)
Exemplo n.º 6
0
def by_main_cell(_experiments_tuples):
    _experiments_tuples_filtered = []
    for _tuple in _experiments_tuples:
        _experiment, _series_id, _group = _tuple
        _cell_id = int(_group.split('_')[1])
        _series_properties = load.image_properties(_experiment, _series_id)
        if _cell_id == _series_properties['main_cell_id']:
            _experiments_tuples_filtered.append(_tuple)

    return _experiments_tuples_filtered
Exemplo n.º 7
0
def cell_z_position_from_substrate(_experiment,
                                   _series_id,
                                   _cell_id,
                                   _time_frame=0):
    _properties = load.image_properties(_experiment, _series_id)
    _series_z_position = _properties['position']['z']
    _cells_coordinates_tracked = \
        load.cell_coordinates_tracked_series_file_data(_experiment, _series_id)
    _cell_z_position = _cells_coordinates_tracked[int(
        _cell_id)][_time_frame][2] * _properties['resolutions']['z']

    return _series_z_position + _cell_z_position
Exemplo n.º 8
0
def pair_distance_in_cell_size(_experiment, _series_id, _cell_1_coordinates,
                               _cell_2_coordinates):
    _image_properties = load.image_properties(_experiment, _series_id)
    _image_resolutions = _image_properties['resolutions']
    _x1, _y1, _z1 = [float(_value) for _value in _cell_1_coordinates[0]]
    _x2, _y2, _z2 = [float(_value) for _value in _cell_2_coordinates[0]]
    _x1, _y1, _z1 = _x1 * _image_resolutions['x'], _y1 * _image_resolutions[
        'y'], _z1 * _image_resolutions['z']
    _x2, _y2, _z2 = _x2 * _image_resolutions['x'], _y2 * _image_resolutions[
        'y'], _z2 * _image_resolutions['z']

    return math.sqrt((_x1 - _x2)**2 + (_y1 - _y2)**2 +
                     (_z1 - _z2)**2) / AVERAGE_CELL_DIAMETER_IN_MICRONS
def main():
    _experiment = 'SN41'
    _series_id = 3
    _group = 'static_0_1'
    _x1, _y1, _z1 = 23, 226, 10
    _x2, _y2, _z2 = 228, 226, 10
    _time_frame = 34
    _series_image_path = paths.serieses(_experiment, _series_id)
    _image_properties = load.image_properties(_experiment, _series_id)
    _series_image = tifffile.imread(_series_image_path)
    _series_image_by_time_frames = [
        np.array([
            _z[IMAGE_FIBER_CHANNEL_INDEX] for _z in _series_image[_time_frame]
        ]) for _time_frame in range(_series_image.shape[0])
    ]
    plt.imshow(_series_image_by_time_frames[_time_frame][30])
    plt.show()
def process_experiment(_experiment, _overwrite=False):
    _arguments = []
    for _series in paths.image_files(paths.serieses(_experiment)):
        _series_id = int(_series.split('_')[1])
        _image_properties = load.image_properties(_experiment, _series_id)
        _cells_coordinates = load.cell_coordinates_tracked_series_file_data(
            _experiment, _series_id)
        for _cell_id in range(len(_cells_coordinates)):
            for _degrees_xy, _degrees_z in product(DEGREES_XY, DEGREES_Z):
                _arguments.append({
                    'experiment':
                    _experiment,
                    'series_id':
                    _series_id,
                    'cell_id':
                    _cell_id,
                    'degrees_xy':
                    _degrees_xy,
                    'degrees_z':
                    _degrees_z,
                    'cell_coordinates':
                    _cells_coordinates,
                    'cell_type':
                    'real',
                    'resolutions':
                    _image_properties['resolutions'],
                    'overwrite':
                    _overwrite
                })

    with Pool(CPUS_TO_USE) as _p:
        for _ in tqdm(_p.imap_unordered(process_group, _arguments),
                      total=len(_arguments),
                      desc='Creating'):
            pass
        _p.close()
        _p.join()
Exemplo n.º 11
0
def main():
    _experiment = 'DeadDead_201208'
    _tuples = load.experiment_groups_as_tuples(_experiment)

    _cell_ids = {}
    for _tuple in _tuples:
        _experiment, _series_id, _group = _tuple
        _group_split = _group.split('_')
        _cell_1_id = int(_group_split[1])
        _cell_2_id = int(_group_split[2])

        if _series_id not in _cell_ids:
            _cell_ids[_series_id] = [_cell_1_id, _cell_2_id]
        else:
            if _cell_1_id not in _cell_ids[_series_id]:
                _cell_ids[_series_id].append(_cell_1_id)
            if _cell_2_id not in _cell_ids[_series_id]:
                _cell_ids[_series_id].append(_cell_2_id)

    for _series_id in _cell_ids.keys():
        _properties = load.image_properties(_experiment, _series_id)
        _properties['dead_cell_ids'] = _cell_ids[_series_id]
        save.image_properties(_experiment, _series_id, _properties)
        print(_experiment, _series_id, sep='\t')
Exemplo n.º 12
0
def process_series(_experiment, _series_id, _overwrite=False):
    _normalization_path = paths.normalization(_experiment, _series_id)
    if not _overwrite and os.path.isfile(_normalization_path):
        return

    _series_image_first_time_frame = load.series_image(_experiment,
                                                       _series_id)[0]
    _image_properties = load.image_properties(_experiment, _series_id)
    _cells = load.objects_time_frame_file_data(_experiment,
                                               _series_id,
                                               _time_frame=1)
    _cell_diameter_x = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['x']
    _cell_diameter_y = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['y']
    _cell_diameter_z = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['z']
    _z_shape, _y_shape, _x_shape = _series_image_first_time_frame.shape
    _z_step, _y_step, _x_step = [
        int(round(_value * STEP_PERCENTAGE))
        for _value in [_z_shape, _y_shape, _x_shape]
    ]

    _averages = []
    for _z, _y, _x in product(range(0, _z_shape, _z_step),
                              range(0, _y_shape, _y_step),
                              range(0, _x_shape, _x_step)):
        _x1 = _x - _cell_diameter_x / 2
        _x2 = _x1 + _cell_diameter_x
        _y1 = _y - _cell_diameter_y / 2
        _y2 = _y1 + _cell_diameter_y
        _z1 = _z - _cell_diameter_z / 2
        _z2 = _z1 + _cell_diameter_z
        _x1, _y1, _z1, _x2, _y2, _z2 = [
            int(round(_value)) for _value in [_x1, _y1, _z1, _x2, _y2, _z2]
        ]

        # window is in borders
        if all([
                _x1 >= 0, _x2 < _x_shape, _y1 >= 0, _y2 < _y_shape, _z1 >= 0,
                _z2 < _z_shape
        ]):

            # make sure no cells are around
            _in_window = False
            for _cell in _cells:
                _cell_x, _cell_y, _cell_z = _cell

                # cover entire box around the cell
                for _value_x, _value_y, _value_z in product(
                        CELL_BORDERS_VALUES, CELL_BORDERS_VALUES,
                        CELL_BORDERS_VALUES):
                    if is_in_window(_x1, _y1, _z1, _x2, _y2, _z2,
                                    _cell_x + _cell_diameter_x * _value_x,
                                    _cell_y + _cell_diameter_y * _value_y,
                                    _cell_z + _cell_diameter_z * _value_z):
                        _in_window = True
                        break

                # one cell is enough
                if _in_window:
                    break

            # one cell is enough
            if _in_window:
                continue

            # no cells are around, compute
            _pixels = _series_image_first_time_frame[_z1:_z2, _y1:_y2, _x1:_x2]

            # convert to 8 bit color depth
            if CONVERT_TO_COLOR_DEPTH_8_BIT:
                _pixels = np.rint(_pixels / (math.pow(2, 16) - 1) *
                                  (math.pow(2, 8) - 1)).astype(np.uint8)

            _averages.append(np.mean(_pixels))

    # compute average and std of averages
    _average, _std = np.mean(_averages), np.std(_averages)

    # save
    _normalization = {'average': _average, 'std': _std}
    save_lib.to_json(_normalization, _normalization_path)

    print('Saved', _experiment, _series_id, sep='\t')
Exemplo n.º 13
0
def temporal_resolution_in_minutes(_experiment):
    _properties = load.image_properties(_experiment, _series_id=1)
    return round(_properties['frames_interval'] / 60)