Exemplo n.º 1
0
def test_generate_timeseries_for_fips(
    include_projections,
    nyc_model_output_path,
    nyc_region,
    nyc_rt_dataset,
    nyc_icu_dataset,
):
    us_latest = combined_datasets.load_us_latest_dataset()
    us_timeseries = combined_datasets.load_us_timeseries_dataset()

    nyc_latest = us_latest.get_record_for_fips(nyc_region.fips)
    nyc_timeseries = us_timeseries.get_one_region(nyc_region)
    intervention = Intervention.OBSERVED_INTERVENTION
    model_output = CANPyseirLocationOutput.load_from_path(
        nyc_model_output_path)
    metrics_series, latest_metric = api_pipeline.generate_metrics_and_latest(
        nyc_timeseries, nyc_rt_dataset, nyc_icu_dataset)

    region_summary = generate_api.generate_region_summary(
        nyc_latest, latest_metric, model_output)
    region_timeseries = generate_api.generate_region_timeseries(
        region_summary, nyc_timeseries, metrics_series, model_output)

    summary = generate_api.generate_region_summary(nyc_latest, latest_metric,
                                                   model_output)

    assert summary.dict() == region_timeseries.region_summary.dict()
    # Double checking that serialized json does not contain NaNs, all values should
    # be serialized using the simplejson wrapper.
    assert "NaN" not in region_timeseries.json()
Exemplo n.º 2
0
def build_timeseries_for_fips(intervention, us_latest, us_timeseries,
                              model_output_dir,
                              fips) -> Optional[RegionSummaryWithTimeseries]:
    fips_latest = us_latest.get_record_for_fips(fips)

    if intervention is Intervention.SELECTED_INTERVENTION:
        state = fips_latest[CommonFields.STATE]
        intervention = get_can_projection.get_intervention_for_state(state)

    model_output = CANPyseirLocationOutput.load_from_model_output_if_exists(
        fips, intervention, model_output_dir)
    if not model_output and intervention is not Intervention.OBSERVED_INTERVENTION:
        # All model output is currently tied to a specific intervention. However,
        # we want to generate results for regions that don't have a fit result, but we're not
        # duplicating non-model outputs.
        return None

    try:
        region_summary = api.generate_region_summary(fips_latest, model_output)
        fips_timeseries = us_timeseries.get_subset(None, fips=fips)
        region_timeseries = api.generate_region_timeseries(
            region_summary, fips_timeseries, model_output)
    except Exception:
        logger.error(f"failed to run output", fips=fips)
        return None

    return region_timeseries
def test_generate_timeseries_for_fips(include_projections,
                                      nyc_model_output_path, nyc_fips):

    us_latest = combined_datasets.build_us_latest_with_all_fields()
    us_timeseries = combined_datasets.build_us_timeseries_with_all_fields()

    nyc_latest = us_latest.get_record_for_fips(nyc_fips)
    nyc_timeseries = us_timeseries.get_subset(None, fips=nyc_fips)
    intervention = Intervention.OBSERVED_INTERVENTION
    model_output = CANPyseirLocationOutput.load_from_path(
        nyc_model_output_path)

    region_summary = generate_api.generate_region_summary(
        nyc_latest, model_output)
    region_timeseries = generate_api.generate_region_timeseries(
        region_summary, nyc_timeseries, model_output)

    summary = generate_api.generate_region_summary(nyc_latest, model_output)

    assert summary.dict() == region_timeseries.region_summary.dict()
    # Double checking that serialized json does not contain NaNs, all values should
    # be serialized using the simplejson wrapper.
    assert "NaN" not in region_timeseries.json()
Exemplo n.º 4
0
def build_timeseries_for_region(
    regional_input: RegionalInput, ) -> Optional[RegionSummaryWithTimeseries]:
    intervention = regional_input.intervention

    if intervention is Intervention.SELECTED_INTERVENTION:
        intervention = get_can_projection.get_intervention_for_state(
            regional_input.state)

    try:
        metrics_timeseries, metrics_latest = generate_metrics_and_latest(
            regional_input.timeseries,
            regional_input.rt_data,
            regional_input.icu_data,
        )
        region_summary = api.generate_region_summary(regional_input.latest,
                                                     metrics_latest, None)
        region_timeseries = api.generate_region_timeseries(
            region_summary, regional_input.timeseries, metrics_timeseries,
            None)
    except Exception:
        logger.exception(f"Failed to build timeseries for fips.")
        return None

    return region_timeseries
def test_build_summary_for_fips(include_projections, nyc_model_output_path,
                                nyc_fips):

    us_latest = combined_datasets.build_us_latest_with_all_fields()
    nyc_latest = us_latest.get_record_for_fips(nyc_fips)
    model_output = None
    expected_projections = None

    intervention = Intervention.OBSERVED_INTERVENTION
    if include_projections:
        model_output = CANPyseirLocationOutput.load_from_path(
            nyc_model_output_path)
        expected_projections = Projections(
            totalHospitalBeds=ResourceUsageProjection(peakShortfall=0,
                                                      peakDate=datetime.date(
                                                          2020, 4, 15),
                                                      shortageStartDate=None),
            ICUBeds=None,
            Rt=model_output.latest_rt,
            RtCI90=model_output.latest_rt_ci90,
        )
        intervention = Intervention.STRONG_INTERVENTION

    summary = generate_api.generate_region_summary(nyc_latest, model_output)

    expected = RegionSummary(
        population=nyc_latest["population"],
        stateName="New York",
        countyName="New York County",
        fips="36061",
        lat=None,
        long=None,
        actuals=Actuals(
            population=nyc_latest["population"],
            intervention="STRONG_INTERVENTION",
            cumulativeConfirmedCases=nyc_latest["cases"],
            cumulativeDeaths=nyc_latest["deaths"],
            cumulativePositiveTests=nyc_latest["positive_tests"],
            cumulativeNegativeTests=nyc_latest["negative_tests"],
            hospitalBeds={
                # Manually calculated from capacity calculation in generate_api.py
                "capacity": 12763,
                "totalCapacity": nyc_latest["max_bed_count"],
                "currentUsageCovid": 0,
                "currentUsageTotal": None,
                "typicalUsageRate": nyc_latest["all_beds_occupancy_rate"],
            },
            ICUBeds={
                "capacity": nyc_latest["icu_beds"],
                "totalCapacity": nyc_latest["icu_beds"],
                "currentUsageCovid": 0,
                "currentUsageTotal": 0,
                "typicalUsageRate": nyc_latest["icu_occupancy_rate"],
            },
            contactTracers=nyc_latest["contact_tracers_count"],
        ),
        lastUpdatedDate=datetime.datetime.utcnow(),
        projections=expected_projections,
    )
    import pprint

    pprint.pprint(expected.actuals.ICUBeds.dict())
    pprint.pprint(summary.actuals.ICUBeds.dict())
    assert expected.dict() == summary.dict()