Exemplo n.º 1
0
def run_sim(num_net, nets_inhm_attr, I9, nets_a, nets_g, vec_size_net,
            vec_nmc_state, theta0, theta1, theta_setup, sampleinfo, sample_k,
            mcJump, filename, jsim, jscid):

    np.random.seed(jsim * num_net + jscid + 2026642028)

    jattr = nets_inhm_attr[jscid]
    jI9 = I9[jscid]
    jA = nets_a[jscid]
    jG = nets_g[jscid]
    nn = int(vec_size_net[jscid])
    jkk = sample_k[jscid]
    nmc_state = vec_nmc_state[jscid]
    [vv, ww, h, phi1, phi2, psi, qhat] = theta2param(theta1, jattr,
                                                     theta_setup, sampleinfo)
    [jG1, jA1, p_th1_s1,
     p_th1_s0] = gen_kCD_fixG(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn, jkk,
                              mcJump, nmc_state, jG, jA)
    ## Could be more efficient.
    [vv, ww, h, phi1, phi2, psi, qhat] = theta2param(theta0, jattr,
                                                     theta_setup, sampleinfo)
    p_th0_s1 = potentialCwrap(vv, ww, h, phi1, phi2, psi, qhat, jI9, jG1, jA1,
                              nn)
    p_th0_s0 = potentialCwrap(vv, ww, h, phi1, phi2, psi, qhat, jI9, jG, jA,
                              nn)

    #    if jsim>0 and jsim%5000==0:
    #        state2pickle(filename+'-kCD-state--scid-'+str(jscid+1).zfill(2)+'--sim-'+str(jsim+1).zfill(6),jG1,jA1)
    #        #print(f'Saving {posteriorfile}')

    p_dTh_s1 = p_th1_s1 - p_th0_s1
    p_dTh_s0 = p_th1_s0 - p_th0_s0
    return (p_dTh_s0 - p_dTh_s1)  #,mcstats
Exemplo n.º 2
0
def gen_sample(num_nets, attr, I9, data_a, data_g, size_nets, sampleinfo,
               numsim, vec_numsim_kCD, theta_draws, theta_setup, sample_k,
               mcJump, jscid):

    flag_largest_scid = size_nets.index(max(size_nets)) == jscid
    #for jscid in range(num_nets):
    #print(f'Simulation {js+1} {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')

    jattr = attr[jscid]
    jI9 = I9[jscid]
    jA = data_a[jscid]
    jG = data_g[jscid]
    nn = int(size_nets[jscid])
    jkk = sample_k[jscid]
    numsim_kCD = vec_numsim_kCD[jscid]

    sim_a = np.zeros([numsim + 1, nn])
    sim_g = np.zeros([numsim + 1, nn, nn])
    sim_a[0, :] = jA
    sim_g[0, :, :] = jG

    np.random.seed(jscid + 2026642028)
    for js in range(numsim):
        theta_js = (theta_draws.iloc[js]).to_numpy()
        [vv, ww, h, phi1, phi2, psi,
         qhat] = theta2param(theta_js, jattr, theta_setup, sampleinfo)
        [jG1, jA1, p_th1_s1,
         p_th1_s0] = gen_kCD(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn, jkk,
                             mcJump, numsim_kCD, jG, jA)
        #print(f'fine={js:4d} prev={np.mean(jA1):5.4f}/{np.mean(jA):5.4f} density={np.mean(jG1.ravel()):5.4f}/{np.mean(jG.ravel()):5.4f}')

        sim_a[js + 1, :] = np.copy(jA1)  #np.copy
        sim_g[js + 1, :, :] = np.copy(jG1)

        #Multiple setups
        #jG=np.copy(jG1)
        #jA=np.copy(jA1)

        if flag_largest_scid and js % 10 == 0:
            systime_t = datetime.now()
            print(
                f'Largest scid {jscid:3d} ({size_nets[jscid]:3d}) sim {js:4d}/{numsim:3d} time {systime_t.strftime("%Y-%m-%d-%H:%M:%S")}.'
            )

    return [sim_a, sim_g, jscid]
Exemplo n.º 3
0
def sim_ctrfPrice_jscid_jctrf(num_nets, attr, I9, data_a, data_g, size_nets,
                              vec_numsim_kCD, thetastars, theta_setups,
                              sampleinfo, sample_k, gridDeltaPrice, mcJump,
                              numsim, filename, cpuinfo, jcpu):

    [ncpu, nscid, nctrf] = cpuinfo
    [jscid, jctrf] = Jcpu2JscidJctrf(jcpu, nscid, nctrf)

    [
        theta_setupModel, theta_setupRestrictNet, theta_setupFixedNet,
        theta_setupNoNetData
    ] = theta_setups
    [
        thetastarModel_draws, thetastarRestrictNet_draws,
        thetastarFixedNet_draws, thetastarNoNetData_draws
    ] = thetastars

    #for jprice,dPrice in enumerate(gridDeltaPrice):
    jprice = jctrf
    #dPrice = gridDeltaPrice[jprice]

    print(jcpu, jscid, jctrf)
    #if size_nets[jscid]==max(size_nets):
    #    print(f'Largest school (scid={jscid:2d}, size={size_nets[jscid]:3d}) delta price = {dPrice:3.0f},  {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')

    jattr = (attr[jscid]).copy()  #fresh copy for each scenario
    jattr.price = jattr.price + gridDeltaPrice[jprice]
    jI9 = I9[jscid]
    nn = int(size_nets[jscid])
    jkk = sample_k[jscid]
    nmc_state = vec_numsim_kCD[jscid]

    sim_a = np.zeros([numsim + 1, nn])
    sim_g = np.zeros([numsim + 1, nn, nn])
    sim_a[0, :] = np.copy(data_a[jscid])
    sim_g[0, :, :] = np.copy(data_g[jscid])

    # (1) Model
    #[vv,ww,h,phi,qhat,I9grade] = theta2param(thetastar,jattr,theta_setup,sampleinfo)

    jA = np.copy(data_a[jscid])
    jG = np.copy(data_g[jscid])
    for js in range(numsim):
        thetastar = (thetastarModel_draws.iloc[js]).to_numpy()
        [vv, ww, h, phi1, phi2, psi,
         qhat] = theta2param(thetastar, jattr, theta_setupModel, sampleinfo)
        np.random.seed(js * num_nets + jscid + 2026642028)
        [jG1, jA1, p_th1_s1,
         p_th1_s0] = gen_kCD(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn, jkk,
                             mcJump, nmc_state, jG, jA)
        sim_a[js + 1, :] = jA1
        sim_g[js + 1, :, :] = jG1

    simdata = [np.copy(sim_a), np.copy(sim_g), jprice, jscid]

    # (2a) Restrict network adjustmens: True estimates but Fixed net
    #[vv,ww,h,phi,qhat,I9grade] = theta2param(thetastarFixedNet,jattr,theta_setupFixedNet,sampleinfo)
    jA = np.copy(data_a[jscid])
    jG = np.copy(data_g[jscid])
    for js in range(numsim):
        thetastar = (thetastarRestrictNet_draws.iloc[js]).to_numpy()
        [vv, ww, h, phi1, phi2, psi,
         qhat] = theta2param(thetastar, jattr, theta_setupRestrictNet,
                             sampleinfo)
        np.random.seed(js * num_nets + jscid + 2026642028)

        [jG1, jA1, p_th1_s1,
         p_th1_s0] = gen_kCD_fixG(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn,
                                  jkk, mcJump, nmc_state, jG, jA)
        sim_a[js + 1, :] = jA1
        sim_g[js + 1, :, :] = jG1

    #Multiple setups: v0 with reset & v1 without
    #jG=np.copy(jG1)
    #jA=np.copy(jA1)
    simdataRestrictNet = [np.copy(sim_a), np.copy(sim_g), jprice, jscid]

    # (2) Exogenous (fixed) network
    jA = np.copy(data_a[jscid])
    jG = np.copy(data_g[jscid])
    for js in range(numsim):
        thetastarFixedNet = (thetastarFixedNet_draws.iloc[js]).to_numpy()
        [vv, ww, h, phi1, phi2, psi,
         qhat] = theta2param(thetastarFixedNet, jattr, theta_setupFixedNet,
                             sampleinfo)
        np.random.seed(js * num_nets + jscid + 2026642028)

        [jG1, jA1, p_th1_s1,
         p_th1_s0] = gen_kCD_fixG(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn,
                                  jkk, mcJump, nmc_state, jG, jA)
        sim_a[js + 1, :] = jA1
        sim_g[js + 1, :, :] = jG1

    simdataFixedNet = [np.copy(sim_a), np.copy(sim_g), jprice, jscid]

    # (3) Model with No Net Data (no local PE)
    #[vv,ww,h,phi,qhat,I9grade] = theta2param(thetastarNoPE,jattr,theta_setupNoPE,sampleinfo)

    jA = np.copy(data_a[jscid])
    jG = np.copy(data_g[jscid])
    for js in range(numsim):
        thetastarNoNetData = (thetastarNoNetData_draws.iloc[js]).to_numpy()
        [vv, ww, h, phi1, phi2, psi,
         qhat] = theta2param(thetastarNoNetData, jattr, theta_setupNoNetData,
                             sampleinfo)
        np.random.seed(js * num_nets + jscid + 2026642028)
        [jG1, jA1, p_th1_s1,
         p_th1_s0] = gen_kCD_fixG(vv, ww, h, phi1, phi2, psi, qhat, jI9, nn,
                                  jkk, mcJump, nmc_state, jG, jA)
        sim_a[js + 1, :] = jA1
        sim_g[js + 1, :, :] = jG1

    simdataNoNetData = [np.copy(sim_a), np.copy(sim_g), jprice, jscid]

    # COMPUTE STATS
    columnnames = ['scid', 'dprice', 'sim', 'netsize']
    for jstats in [
            'prev', 'density', 'avgDeg', 'minDeg', 'maxDeg', 'AGA', 'IAGIA',
            'tri', 'HI', 'CHI', 'FSI'
    ]:
        for jctrfLabel in ['Model', 'RestrictNet', 'FixedNet', 'noNetData']:
            columnnames.append(jstats + '-' + jctrfLabel)
    stats_ctrfPrice = pd.DataFrame(data=np.zeros([(numsim + 1), 48],
                                                 dtype=float),
                                   columns=columnnames)

    for jscenario, ctrfdata in enumerate(
        [simdata, simdataRestrictNet, simdataFixedNet, simdataNoNetData]):
        [sim_a, sim_g, jprice, jscid] = ctrfdata
        for s in range(numsim + 1):
            A = sim_a[s]  #subdimensional array
            G = sim_g[s]  #subdimensional array
            n = len(A)
            stats_ctrfPrice.iloc[s, 0:4] = np.array([jscid, jprice, s, n])
            jstats = np.array(
                stateStats(G, A, n)[:-1] + homophily(G, A, n, True))
            jcolumns = [j for j in range(jscenario + 4, jscenario + 44 + 1, 4)]
            stats_ctrfPrice.iloc[s, jcolumns] = jstats

    return stats_ctrfPrice  #end sim_ctrfPrice_jscid_jctrf
Exemplo n.º 4
0
def sim_state_spills(
        num_nets,
        grid_nnosmoke,
        jattr0,
        I9,
        jA0, 
        jG0, 
        size_nets, 
        vec_numsim_kCD, 
        thetastar_draws, 
        thetastarFixedNet_draws, 
        thetastarNoNetData_draws,
        theta_setup,
        theta_setupFixedNet, 
        theta_setupNoNetData,
        sampleinfo, 
        sample_k,
        mcJump,
        numsim,
        jcpu):
    
    nscid=num_nets
    nctrf=3
    [jscid,jctrf] = Jcpu2JscidJctrf(jcpu,nscid,nctrf)
    
    jI9 = I9[jscid].copy()
    nn  = int(size_nets[jscid])
    nnosmoke = np.round(nn*grid_nnosmoke[jscid]).astype(int)
    jkk = sample_k[jscid]
    nmc_state = vec_numsim_kCD[jscid]
    jA = np.copy(jA0)
    jG = np.copy(jG0)
    
    # Endog net
    sim_a=np.zeros([numsim+1, nn])
    sim_g=np.zeros([numsim+1, nn, nn])
    sim_a[0,:]   = np.copy(jA)
    sim_g[0,:,:] = np.copy(jG)
    
    print(jcpu, jscid, jctrf)
    
    # MODEL
    if jctrf==0:
        for js in range(numsim):
            np.random.seed(js+2026642028)
            ids_nosmoke= np.sort(np.random.permutation(nn)[:nnosmoke])
            jattr = jattr0.copy() #fresh copy for each scenario
            jA = np.copy(jA0)
            jG = np.copy(jG0)
            jA[ids_nosmoke]=0
        
            if thetastar_draws.loc[js,'vPrice']>0:
                jattr.loc[ids_nosmoke,'price']=-1e12
                #jattr.price[jattr.id.isin(ids_nosmoke)] without index=id-1
            else:
                jattr.loc[ids_nosmoke,'price']=1e12
#        if thetastar_draws.loc[js,'vIncome']>0:
#            jattr.loc[ids_nosmoke[jscid],'income']=-1e12
#        else:
#            jattr.loc[ids_nosmoke[jscid],'income']=1e12
    
            thetastar=(thetastar_draws.iloc[js]).to_numpy()
            [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastar,jattr,theta_setup,sampleinfo)
            np.random.seed(js+2026642028)
            [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                                  nn,jkk,mcJump,nmc_state,
                                                  jG,jA)
            sim_a[js+1,:]   = jA1.copy()
            sim_g[js+1,:,:] = jG1.copy()
    # EXOG (FIXED) NET
    elif jctrf==1:
        for js in range(numsim):
            np.random.seed(js+2026642028)
            ids_nosmoke= np.sort(np.random.permutation(nn)[:nnosmoke])
            jattr = jattr0.copy() #fresh copy for each scenario
            jA = np.copy(jA0)
            jG = np.copy(jG0)
            jA[ids_nosmoke]=0
        
            if thetastar_draws.loc[js,'vPrice']>0:
                jattr.loc[ids_nosmoke,'price']=-1e12
                #jattr.price[jattr.id.isin(ids_nosmoke)] without index=id-1
            else:
                jattr.loc[ids_nosmoke,'price']=1e12
#        if thetastar_draws.loc[js,'vIncome']>0:
#            jattr.loc[ids_nosmoke[jscid],'income']=-1e12
#        else:
#            jattr.loc[ids_nosmoke[jscid],'income']=1e12

            thetastarFixedNet      = (thetastarFixedNet_draws.iloc[js]).to_numpy()
            [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastarFixedNet,jattr,theta_setupFixedNet,sampleinfo)
            np.random.seed(js+2026642028)
            [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD_fixG(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                                  nn,jkk,mcJump,nmc_state,
                                                  jG,jA)
            sim_a[js+1,:]   = jA1.copy()
            sim_g[js+1,:,:] = jG1.copy()
    # C NO NET DATA
    elif jctrf==2:
        for js in range(numsim):
            np.random.seed(js+2026642028)
            ids_nosmoke= np.sort(np.random.permutation(nn)[:nnosmoke])
            jattr = jattr0.copy() #fresh copy for each scenario
            jA = np.copy(jA0)
            jG = np.copy(jG0)
            jA[ids_nosmoke]=0
        
            if thetastar_draws.loc[js,'vPrice']>0:
                jattr.loc[ids_nosmoke,'price']=-1e12
                #jattr.price[jattr.id.isin(ids_nosmoke)] without index=id-1
            else:
                jattr.loc[ids_nosmoke,'price']=1e12
#        if thetastar_draws.loc[js,'vIncome']>0:
#            jattr.loc[ids_nosmoke[jscid],'income']=-1e12
#        else:
#            jattr.loc[ids_nosmoke[jscid],'income']=1e12
                
            thetastarNoNetData     = (thetastarNoNetData_draws.iloc[js]).to_numpy()
            [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastarNoNetData,jattr,theta_setupNoNetData,sampleinfo)
            np.random.seed(js+2026642028)
            [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD_fixG(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                                      nn,jkk,mcJump,nmc_state,
                                                      jG,jA)
            sim_a[js+1,:]   = jA1.copy()
            sim_g[js+1,:,:] = jG1.copy()
        
    more_info   = [jscid,jctrf,nn,numsim]
    jctrfSpills = get_stats(sim_a,sim_g,jattr0,more_info)
    
    return jctrfSpills
Exemplo n.º 5
0
def sim_state_spills_old(
        num_nets,
        grid_nnosmoke,
        jattr0,
        I9,
        jA0, 
        jG0, 
        size_nets, 
        vec_numsim_kCD, 
        thetastar_draws, 
        thetastarFixedNet_draws, 
        thetastarNoNetData_draws,
        theta_setup,
        theta_setupFixedNet, 
        theta_setupNoNetData,
        sampleinfo, 
        sample_k,
        mcJump,
        numsim,
        jscid):
    
    jI9 = I9[jscid].copy()
    nn  = int(size_nets[jscid])
    nnosmoke = np.round(nn*grid_nnosmoke[jscid]).astype(int)
    jkk = sample_k[jscid]
    nmc_state = vec_numsim_kCD[jscid]
    jA = np.copy(jA0)
    jG = np.copy(jG0)
    
    # Endog net
    sim_a=np.zeros([numsim+1, nn])
    sim_g=np.zeros([numsim+1, nn, nn])
    sim_a[0,:]   = np.copy(jA)
    sim_g[0,:,:] = np.copy(jG)
    # Fixed net
    sim_a_fixG=np.zeros([numsim+1, nn])
    sim_g_fixG=np.zeros([numsim+1, nn, nn])
    sim_a_fixG[0,:]   = np.copy(jA)
    sim_g_fixG[0,:,:] = np.copy(jG)
    # No net data
    sim_a_noNet=np.zeros([numsim+1, nn])
    sim_g_noNet=np.zeros([numsim+1, nn, nn])
    sim_a_noNet[0,:]   = np.copy(jA)
    sim_g_noNet[0,:,:] = np.copy(jG) 
    for js in range(numsim):
        np.random.seed(js+2026642028)
        ids_nosmoke= np.sort(np.random.permutation(nn)[:nnosmoke])
        jattr = jattr0.copy() #fresh copy for each scenario
        jA = np.copy(jA0)
        jG = np.copy(jG0)
        jA[ids_nosmoke]=0
    
    
        if thetastar_draws.loc[js,'vPrice']>0:
            jattr.loc[ids_nosmoke,'price']=-1e12
            #jattr.price[jattr.id.isin(ids_nosmoke)] without index=id-1
        else:
            jattr.loc[ids_nosmoke,'price']=1e12
#        if thetastar_draws.loc[js,'vIncome']>0:
#            jattr.loc[ids_nosmoke[jscid],'income']=-1e12
#        else:
#            jattr.loc[ids_nosmoke[jscid],'income']=1e12
        # A MODEl        
        thetastar=(thetastar_draws.iloc[js]).to_numpy()
        [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastar,jattr,theta_setup,sampleinfo)
        np.random.seed(js+2026642028)
        [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                              nn,jkk,mcJump,nmc_state,
                                              jG,jA)
        sim_a[js+1,:]   = jA1.copy()
        sim_g[js+1,:,:] = jG1.copy()
        
        # B FIXED (EXOG) NET
        thetastarFixedNet      = (thetastarFixedNet_draws.iloc[js]).to_numpy()
        [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastarFixedNet,jattr,theta_setupFixedNet,sampleinfo)
        np.random.seed(js+2026642028)
        [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD_fixG(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                              nn,jkk,mcJump,nmc_state,
                                              jG,jA)
        sim_a_fixG[js+1,:]   = jA1.copy()
        sim_g_fixG[js+1,:,:] = jG1.copy()
        
        # C NO NET DATA
        thetastarNoNetData     = (thetastarNoNetData_draws.iloc[js]).to_numpy()
        [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastarNoNetData,jattr,theta_setupNoNetData,sampleinfo)
        np.random.seed(js+2026642028)
        [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD_fixG(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                                  nn,jkk,mcJump,nmc_state,
                                                  jG,jA)
        sim_a_noNet[js+1,:]   = jA1.copy()
        sim_g_noNet[js+1,:,:] = jG1.copy()
        if (jscid==0 and js%10==9):
            print(f'Simulation {js+1} {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')

        
    more_info=[jscid,nn,numsim]
    jctrfSpills      = get_stats(sim_a,sim_g,jattr0,more_info)
    if (jscid==0):
        print(f'ctrfSpills stats computed {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')
    jctrfSpills_fixG = get_stats(sim_a_fixG,sim_g_fixG,jattr0,more_info)
    if (jscid==0):
        print(f'ctrfSpills_fixG stats computed {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')
    jctrfSpills_noNet = get_stats(sim_a_noNet,sim_g_noNet,jattr0,more_info)
    if (jscid==0):
        print(f'ctrfSpills_noNet stats computed {(datetime.now()).strftime("%Y-%m-%d-%H:%M:%S")}')
        
    #print(f'completed scid={jscid}')
        
    return jctrfSpills,jctrfSpills_fixG,jctrfSpills_noNet
Exemplo n.º 6
0
def sim_state(num_nets, 
                attr,
                I9,
                data_a, 
                data_g, 
                size_nets, 
                vec_numsim_kCD, 
                thetastar_draws, 
                theta_setup,
                sampleinfo, 
                sample_k,
                mcJump,
                numsim,
                filename,
                jscid):
    
    simdata=[]
    jattr = (attr[jscid]).copy() #fresh copy for each scenario
    jI9 = I9[jscid]
    
    nn  = int(size_nets[jscid])
    jkk = sample_k[jscid]
    nmc_state = vec_numsim_kCD[jscid]
    
    sim_a=np.zeros([numsim+1, nn])
    sim_g=np.zeros([numsim+1, nn, nn])
    sim_a[0,:]   = np.copy(data_a[jscid])
    sim_g[0,:,:] = np.copy(data_g[jscid]) 
    
    # (1) Model
    jA = np.copy(data_a[jscid])
    jG = np.copy(data_g[jscid])
    for js in range(numsim):
        thetastar=(thetastar_draws.iloc[js]).to_numpy()
        [vv,ww,h,phi1,phi2,psi,qhat] = theta2param(thetastar,jattr,theta_setup,sampleinfo)
        np.random.seed(js*num_nets+jscid+2026642028)
        [jG1,jA1,p_th1_s1,p_th1_s0] = gen_kCD(vv,ww,h,phi1,phi2,psi,qhat,jI9,
                                              nn,jkk,mcJump,nmc_state,
                                              jG,jA)
                   
        sim_a[js+1,:]   = jA1
        sim_g[js+1,:,:] = jG1
        
        #Multiple setups: v0 with reset & v1 without
        #jG=np.copy(jG1)
        #jA=np.copy(jA1)
    simdata.append([np.copy(sim_a), np.copy(sim_g), jscid])


    columnnames  = ['scid','sim','netsize','race',
                    'prev', 'density', 'avgDeg', 'minDeg', 'maxDeg', 'AGA', 'IAGIA', 'tri',
                    'HI','CHI','FSI']
    stats_ctrfSchool = pd.DataFrame(data=np.zeros([(numsim+1),15],dtype=float),columns=columnnames)
    for s in range(numsim+1):
        A=sim_a[s] #subdimensional array
        G=sim_g[s] #subdimensional array
        n=len(A)
               
        race=np.mean(jattr.race.to_numpy(float),dtype=float)
        stats_ctrfSchool.iloc[s,0:4] = np.array([jscid,s,n,race])
        stats_ctrfSchool.iloc[s,4:15]= np.array(stateStats(G,A,n)[:-1] + homophily(G,A,n,True))
        
    return stats_ctrfSchool