def test_sublayers(self):
     layers = layer_data_for_testing()
     sublayers, corresponding = generateSublayers(layers)
     _, Thick, Re_NSLD, Im_NSLD, MSLD_rho, MSLD_phi, MSLD_theta = np.loadtxt(
         os.path.join(os.path.dirname(__file__),
                      'data/profile_sublayers.dat'),
         unpack=True)
     Thick = Thick[1:-2]
     Re_NSLD = Re_NSLD[1:-2]
     Im_NSLD = Im_NSLD[1:-2]
     MSLD_rho = MSLD_rho[1:-2]
     MSLD_phi = MSLD_phi[1:-2]
     MSLD_theta = MSLD_theta[1:-2]
     sl_thick = np.array([s.thickness.value for s in sublayers[1:-1]])
     sl_nsld = np.array([s.nsld_real.value for s in sublayers[1:-1]])
     sl_nsldi = np.array([s.nsld_imaginary.value for s in sublayers[1:-1]])
     sl_msldr = np.array([s.msld.rho.value for s in sublayers[1:-1]])
     np.testing.assert_allclose(Thick, sl_thick, atol=1e-3)
     np.testing.assert_allclose(Re_NSLD, sl_nsld, atol=1e-10)
     np.testing.assert_allclose(Im_NSLD, sl_nsldi, atol=1e-13)
     np.testing.assert_allclose(MSLD_rho, sl_msldr, atol=1e-11)
     #Now test that msld.theta and msld.phi are constant in a layer
     sl_msldt = np.array([s.msld.theta.value for s in sublayers[1:-1]])
     sl_msldp = np.array([s.msld.phi.value for s in sublayers[1:-1]])
     np.testing.assert_allclose(MSLD_theta, sl_msldt, atol=1e-3)
     np.testing.assert_allclose(MSLD_phi, sl_msldp, atol=1e-3)
     corresponding = corresponding[1:-1]
     for t, p, l in zip(sl_msldt, sl_msldp, corresponding):
         self.assertAlmostEqual(t, layers[int(l)].msld.theta.value)
         self.assertAlmostEqual(p, layers[int(l)].msld.phi.value)
Exemplo n.º 2
0
 def calculate_residuals(self, parameters):
     ma = ModelAdapter(self.sample_model)
     ma.update_model_from_params(parameters)
     layers = [self.sample_model.incoming_media
               ] + self.sample_model.layers + [self.sample_model.substrate]
     sublayers = generateSublayers(layers)[0]
     chi_array = []
     for ds in self.data_model.datasets:
         if ds.R is not None and len(ds.R) > 1:
             q = ds.Q / 2.
             r = reflection(q, sublayers)
             pol_eff = np.ones(len(q), dtype=np.complex128)
             an_eff = np.ones(len(q), dtype=np.complex128)
             rr = np.real(
                 spin_av(r, ds.pol_Polarizer, ds.pol_Analyzer, pol_eff,
                         an_eff))
             sigma = ds.sigmaQ
             rrr = resolut(
                 rr, q, sigma, 4
             ) * self.data_model.theory_factor + self.data_model.background
             chi_array.append(
                 (rrr / self.data_model.experiment_factor - ds.R) / ds.E)
     chi = np.array(chi_array).ravel()
     self.chiSquaredChanged.emit((chi**2).mean())
     return chi
 def test_plot(self):
     layers = layer_data_for_testing()
     sublayers, corresponding = generateSublayers(layers)
     fig, ax = plt.subplots(2, 1, sharex=False)
     plot_sublayers(ax[0], layers, parameter='NSLD_REAL')
     plot_sublayers(ax[1], layers, parameter='ROUGHNESS')
     #nsld_real plot
     pc = ax[0].get_children()[0]
     np.testing.assert_equal(
         pc.get_array(),
         corresponding)  #colors are corresponding to the correct layer
     self.assertEqual(ax[0].get_xlabel(), 'Depth')
     self.assertEqual(ax[0].get_ylabel(), 'NSLD REAL')
     #sublayer nslds
     sl_height_plot = np.array(
         [path.vertices[2][1] for path in pc.get_paths()])
     sl_height_input = np.array([sl.nsld_real.value for sl in sublayers])
     np.testing.assert_allclose(sl_height_plot, sl_height_input, atol=1e-12)
     #roughness plot
     x, y = ax[1].get_children()[1].get_data()
     np.testing.assert_allclose(x,
                                np.array([0, 90., 130., 205., 330]),
                                atol=1e-9)
     np.testing.assert_allclose(y,
                                np.array([0., 8., 5., 4., 5.]),
                                atol=1e-9)
     self.assertEqual(ax[1].get_xlabel(), 'Depth')
     self.assertEqual(ax[1].get_ylabel(), 'ROUGHNESS')
     plt.close()
Exemplo n.º 4
0
    def generate_sub_layers(self):
        """
            Wrapper to generate sub layers.

            TODO: There is an inconsistency between the reflectivity calculation and the
            sublayer generation. The sublayer generation generates
                layer.msld = MSLD(rho, theta, phi)
            but the reflectivity calculation expects
                layer.msld = [rho_x, rho_y, rho_z]
        """
        _sublayers, _ = generateSublayers(self._model_layers)

        for l in _sublayers:
            l._thickness = l.thickness.value
            l._msld = [0, 0, 0]

        return _sublayers
Exemplo n.º 5
0
def plot_sublayers(ax, layers, parameter='NSLD_REAL'):
    sublayers, corresponding = generateSublayers(layers)
    thick = [sl.thickness.value for sl in sublayers]
    depth = np.array(thick)
    try:
        thic_kmax = depth[np.isfinite(depth)].max()
    except ValueError:
        # all layers are infinite (maybe just incoming media and substrate)
        thic_kmax = 1
    depth[np.isinf(depth)] = thic_kmax
    th1 = depth[corresponding.index(1)]
    depth = depth.cumsum()
    depth -= depth[corresponding.index(1)] - th1
    depth = np.insert(depth, 0, depth[0] - thic_kmax)
    ax.clear()
    if parameter == 'NSLD_REAL':
        val = np.array([sl.nsld_real.value for sl in sublayers])
    elif parameter == 'NSLD_IMAGINARY':
        val = np.array([sl.nsld_imaginary.value for sl in sublayers])
    elif parameter == 'MSLD_RHO':
        val = np.array([sl.msld.rho.value for sl in sublayers])
    elif parameter == 'MSLD_THETA':
        val = np.array([sl.msld.theta.value for sl in sublayers])
    elif parameter == 'MSLD_PHI':
        val = np.array([sl.msld.phi.value for sl in sublayers])
    elif parameter == 'ROUGHNESS':
        val = np.array([layer.roughness.value for layer in layers[1:]])
    else:
        raise ValueError('The variable to be plotted could not be found')
    if parameter != 'ROUGHNESS':
        ax.plot(depth[1:], val, visible=False)
        ax.plot([-1], [0.], visible=False)
        patches = []
        for i, v in enumerate(val):
            polygon = Polygon([[depth[i], 0.], [depth[i], v],
                               [depth[i + 1], v], [depth[i + 1], 0]], True)
            patches.append(polygon)
        xmin, xmax = ax.get_xlim()
        patches[0] = Polygon(
            [[xmin, 0.], [xmin, val[0]], [depth[1], val[0]], [depth[1], 0]],
            True)
        patches[-1] = Polygon([[depth[-2], 0.], [depth[-2], val[-1]],
                               [xmax, val[-1]], [xmax, 0]], True)
        p = PatchCollection(patches,
                            cmap=matplotlib.cm.jet,
                            alpha=0.4,
                            picker=True)
        p.set_array(np.array(corresponding))
        ax.add_collection(p)
        ax.ticklabel_format(axis='y', style='sci', scilimits=(-2, 2))
    if parameter == 'ROUGHNESS':
        ax.plot([-1, depth[1], depth[-1]],
                [0, np.max(val), np.min(val)],
                visible=False)
        xmin, xmax = ax.get_xlim()
        lthick = [l.thickness.value for l in layers[1:]]
        lthick.insert(0, 0.)
        lthick = np.array(lthick[:-1])
        depth = lthick.cumsum()
        ax.stem(depth, val, linefmt='--')
        ax.set_xlim(xmin, xmax)
    ax.axhline(y=0)
    ax.set_xlabel('Depth')
    ax.set_ylabel(parameter.replace('_', ' '))
    return sublayers, corresponding