Exemplo n.º 1
0
def makeTrainer(*, task='h**o', device='cuda', lr=3e-3, bs=75, num_epochs=500,network=MolecLieResNet, 
                net_config={'k':1536,'nbhd':100,'act':'swish','group':lieGroups.T(3),
                'bn':True,'aug':True,'mean':True,'num_layers':6}, recenter=False,
                subsample=False, trainer_config={'log_dir':None,'log_suffix':''}):#,'log_args':{'timeFrac':1/4,'minPeriod':0}}):
    # Create Training set and model
    device = torch.device(device)
    with FixedNumpySeed(0):
        datasets, num_species, charge_scale = QM9datasets()
        if subsample: datasets.update(split_dataset(datasets['train'],{'train':subsample}))
    ds_stats = datasets['train'].stats[task]
    if recenter:
        m = datasets['train'].data['charges']>0
        pos = datasets['train'].data['positions'][m]
        mean,std = pos.mean(dim=0),1#pos.std()
        for ds in datasets.values():
            ds.data['positions'] = (ds.data['positions']-mean[None,None,:])/std
    model = network(num_species,charge_scale,**net_config).to(device)
    # Create train and Val(Test) dataloaders and move elems to gpu
    dataloaders = {key:LoaderTo(DataLoader(dataset,batch_size=bs,num_workers=0,
                    shuffle=(key=='train'),pin_memory=False,collate_fn=collate_fn,drop_last=True),
                    device) for key,dataset in datasets.items()}
    # subsampled training dataloader for faster logging of training performance
    dataloaders['Train'] = islice(dataloaders['train'],len(dataloaders['test']))#islice(dataloaders['train'],len(dataloaders['train'])//10)
    
    # Initialize optimizer and learning rate schedule
    opt_constr = functools.partial(Adam, lr=lr)
    cos = cosLr(num_epochs)
    lr_sched = lambda e: min(e / (.01 * num_epochs), 1) * cos(e)
    return MoleculeTrainer(model,dataloaders,opt_constr,lr_sched,
                            task=task,ds_stats=ds_stats,**trainer_config)
Exemplo n.º 2
0
        'augerino': True,
        'aug': True
    },
    'base': {
        'augerino': False,
        'aug': False
    },
    'aug': {
        'augerino': False,
        'aug': True
    }
}

if __name__ == '__main__':
    Trial = train_trial(makeTrainer)
    config_spec = copy.deepcopy(makeTrainer.__kwdefaults__)
    config_spec['trainer_config']['log_suffix'] = 'qm9_augerino'
    config_spec['trainer_config']['early_stop_metric'] = 'valid_MAE'
    config_spec.update({'task': ['h**o', 'lumo']})
    config_spec['net_config']['group'] = [lieGroups.Trivial(3), lieGroups.T(3)]
    name = 'qm9_augerino_expt_full'  #config_spec.pop('study_name')
    thestudy = Study(Trial, {},
                     study_name=name,
                     base_log_dir=config_spec['trainer_config'].get(
                         'log_dir', None))
    for name, net_cfg in expt_settings.items():
        the_config = copy.deepcopy(config_spec)
        the_config['net_config'].update(net_cfg)
        the_config['name'] = name
        thestudy.run(num_trials=-1, new_config_spec=the_config, ordered=True)
    print(thestudy.results_df())