Exemplo n.º 1
0
def test_from_matrix():
    T_good = SE2.from_matrix(torch.eye(3))
    assert isinstance(T_good, SE2) \
        and isinstance(T_good.rot, SO2) \
        and T_good.trans.shape == (2,) \
        and SE2.is_valid_matrix(T_good.as_matrix()).all()

    T_bad = SE2.from_matrix(torch.eye(3).add_(1e-3), normalize=True)
    assert isinstance(T_bad, SE2) \
        and isinstance(T_bad.rot, SO2) \
        and T_bad.trans.shape == (2,) \
        and SE2.is_valid_matrix(T_bad.as_matrix()).all()
Exemplo n.º 2
0
def test_from_matrix_batch():
    T_good = SE2.from_matrix(torch.eye(3).repeat(5, 1, 1))
    assert isinstance(T_good, SE2) \
        and T_good.trans.shape == (5, 2) \
        and SE2.is_valid_matrix(T_good.as_matrix()).all()

    T_bad = T_good.as_matrix()
    T_bad[3, :, :].add_(0.1)
    T_bad = SE2.from_matrix(T_bad, normalize=True)
    assert isinstance(T_bad, SE2) \
        and T_bad.trans.shape == (5, 2) \
        and SE2.is_valid_matrix(T_bad.as_matrix()).all()
Exemplo n.º 3
0
 def mean_position(self, mean, logvar):
     batch_size = mean.shape[0]
     mean = mean.view(batch_size * self._head_count,
                      mean.shape[1] // self._head_count)
     mean_matrix = self.make_matrix(mean[:, :2], mean[:, 2:])
     log_mean = SE2.log(SE2.from_matrix(mean_matrix, normalize=False))
     if log_mean.dim() < 2:
         log_mean = log_mean[None]
     logvar = logvar.view(batch_size * self._head_count,
                          logvar.shape[1] // self._head_count)
     inverse_sigma_matrix = self.get_inverse_sigma_matrix(logvar)
     inverse_covariance_matrix = torch.bmm(
         inverse_sigma_matrix.transpose(1, 2), inverse_sigma_matrix)
     result_inverse_covariance_matrix = torch.sum(
         inverse_covariance_matrix.reshape(-1, self._head_count, 3, 3),
         dim=1)
     result_covariance_matrix = torch.inverse(
         result_inverse_covariance_matrix)
     factors = torch.bmm(
         result_covariance_matrix.repeat_interleave(self._head_count, 0),
         inverse_covariance_matrix)
     scaled_log_mean = torch.bmm(factors, log_mean[:, :, None])[:, :, 0]
     result_log_mean = torch.sum(scaled_log_mean.reshape(
         -1, self._head_count, 3),
                                 dim=1)
     mean_matrix = SE2.exp(result_log_mean).as_matrix()
     if mean_matrix.dim() < 3:
         mean_matrix = mean_matrix[None]
     positions = torch.zeros(batch_size, 2, device=mean.device)
     positions[:, 0] = mean_matrix[:, 0, 2]
     positions[:, 1] = mean_matrix[:, 1, 2]
     return positions
Exemplo n.º 4
0
    def sample(self, mean, logvar):
        batch_size = mean.shape[0]
        mean = mean.view(batch_size * self._head_count,
                         mean.shape[1] // self._head_count)
        mean_matrix = self.make_matrix(mean[:, :2], mean[:, 2:])
        log_mean = SE2.log(SE2.from_matrix(mean_matrix, normalize=False))
        if log_mean.dim() < 2:
            log_mean = log_mean[None]
        logvar = logvar.view(batch_size * self._head_count,
                             logvar.shape[1] // self._head_count)
        inverse_sigma_matrix = self.get_inverse_sigma_matrix(logvar)
        inverse_covariance_matrix = torch.bmm(
            inverse_sigma_matrix.transpose(1, 2), inverse_sigma_matrix)
        result_inverse_covariance_matrix = torch.sum(
            inverse_covariance_matrix.reshape(-1, self._head_count, 3, 3),
            dim=1)
        result_covariance_matrix = torch.inverse(
            result_inverse_covariance_matrix)
        factors = torch.bmm(
            result_covariance_matrix.repeat_interleave(self._head_count, 0),
            inverse_covariance_matrix)
        scaled_log_mean = torch.bmm(factors, log_mean[:, :, None])[:, :, 0]
        result_log_mean = torch.sum(scaled_log_mean.reshape(
            -1, self._head_count, 3),
                                    dim=1)
        mean_matrix = SE2.exp(result_log_mean).as_matrix()
        if mean_matrix.dim() < 3:
            mean_matrix = mean_matrix[None]

        try:
            # inverse_sigma_matrix = torch.cholesky(result_inverse_covariance_matrix)
            # sigma_matrix = torch.inverse(inverse_sigma_matrix)
            sigma_matrix = torch.cholesky(result_covariance_matrix +
                                          torch.eye(3, device=mean.device) *
                                          1e-4)
        except RuntimeError as msg:
            print(inverse_covariance_matrix)
            print(result_inverse_covariance_matrix)
            print(result_covariance_matrix)
            print("Cholesky error", msg)
            sigma_matrix = (torch.eye(3, device=mean.device) * 1e4).expand(
                batch_size, 3, 3)

        epsilon = torch.randn(batch_size, 3, device=mean.device)
        delta = torch.bmm(sigma_matrix, epsilon[:, :, None])[:, :, 0]
        delta_matrix = SE2.exp(delta).as_matrix()
        if delta_matrix.dim() < 3:
            delta_matrix = delta_matrix[None]
        position_matrix = torch.bmm(mean_matrix, delta_matrix)
        positions = torch.zeros(batch_size, 3)
        positions[:, 0] = position_matrix[:, 0, 2]
        positions[:, 1] = position_matrix[:, 1, 2]
        positions[:, 2] = torch.atan2(position_matrix[:, 1, 0],
                                      position_matrix[:, 0, 0])
        positions = positions.cpu().detach().numpy()
        return positions
Exemplo n.º 5
0
def test_from_matrix():
    T_good = SE2.from_matrix(torch.eye(3))

    print(T_good.rot.mat)
    torch.allclose(tensor([
        [1, 0],
        [0, 1],
    ], dtype=torch.float32), T_good.rot.mat)
    torch.allclose(tensor([0, 0], dtype=torch.float32), T_good.trans)

    assert isinstance(T_good, SE2) \
        and isinstance(T_good.rot, SO2) \
        and T_good.trans.shape == (2,)
Exemplo n.º 6
0
def test_dot():
    T = torch.Tensor([[0, -1, -0.5], [1, 0, 0.5], [0, 0, 1]])
    T_SE2 = SE2.from_matrix(T)
    torch.allclose(tensor([np.pi / 2], dtype=torch.float32),
                   T_SE2.rot.to_angle())
    torch.allclose(tensor([-0.5, 0.5], dtype=torch.float32), T_SE2.trans)

    pt = torch.Tensor([1, 2])
    Tpt_SE2 = T_SE2.dot(pt)
    torch.allclose(tensor([-2 - 0.5, 1 + 0.5], dtype=torch.float32), Tpt_SE2)

    pth = torch.Tensor([1, 2, 1])
    Tpth_SE2 = T_SE2.dot(pth)
    torch.allclose(tensor([-2 - 0.5, 1 + 0.5, 1], dtype=torch.float32),
                   Tpth_SE2)
Exemplo n.º 7
0
def test_dot():
    T = torch.Tensor([[0, -1, -0.5], [1, 0, 0.5], [0, 0, 1]])
    T_SE2 = SE2.from_matrix(T)
    pt = torch.Tensor([1, 2])
    pth = torch.Tensor([1, 2, 1])

    TT = torch.mm(T, T)
    TT_SE2 = T_SE2.dot(T_SE2).as_matrix()
    assert utils.allclose(TT_SE2, TT)

    Tpt = torch.matmul(T[0:2, 0:2], pt) + T[0:2, 2]
    Tpt_SE2 = T_SE2.dot(pt)
    assert utils.allclose(Tpt_SE2, Tpt)

    Tpth = torch.matmul(T, pth)
    Tpth_SE2 = T_SE2.dot(pth)
    assert utils.allclose(Tpth_SE2, Tpth) and \
        utils.allclose(Tpth_SE2[0:2], Tpt)
Exemplo n.º 8
0
    def log_prob(self, value, mean, logvar):
        if logvar.dim() < 2:
            logvar = logvar[None].expand(mean.shape[0], logvar.shape[0])
        value_matrix = self.make_matrix(
            value[0], torch.nn.functional.normalize(value[1]))
        rotation = torch.nn.functional.normalize(mean[:, 2:4])
        mean_matrix = self.make_matrix(mean[:, 0:2],
                                       rotation).expand_as(value_matrix)
        delta_matrix = torch.bmm(self.pose_matrix_inverse(mean_matrix),
                                 value_matrix)
        delta_log = SE2.log(SE2.from_matrix(delta_matrix, normalize=False))
        if delta_log.dim() < 2:
            delta_log = delta_log[None]
        inverse_sigma_matrix = self.get_inverse_sigma_matrix(logvar).expand(
            delta_log.shape[0], delta_log.shape[1], delta_log.shape[1])
        delta_log = torch.bmm(inverse_sigma_matrix, delta_log[:, :,
                                                              None])[:, :, 0]
        log_determinant = self.get_logvar_determinant(logvar)

        log_prob = torch.sum(delta_log**2 / 2.,
                             dim=1) + 0.5 * log_determinant + 3 * math.log(
                                 math.sqrt(2 * math.pi))
        return log_prob
Exemplo n.º 9
0
def test_dot_batch():
    T1 = torch.Tensor([[0, -1, -0.5], [1, 0, 0.5], [0, 0, 1]]).expand(5, 3, 3)
    T2 = torch.Tensor([[0, -1, -0.5], [1, 0, 0.5], [0, 0, 1]])
    T1_SE2 = SE2.from_matrix(T1)
    T2_SE2 = SE2.from_matrix(T2)
    pt1 = torch.Tensor([1, 2])
    pt2 = torch.Tensor([4, 5])
    pt3 = torch.Tensor([7, 8])
    pts = torch.cat(
        [pt1.unsqueeze(dim=0),
         pt2.unsqueeze(dim=0),
         pt3.unsqueeze(dim=0)],
        dim=0)  # 3x2
    ptsbatch = pts.unsqueeze(dim=0).expand(5, 3, 2)
    pt1h = torch.Tensor([1, 2, 1])
    pt2h = torch.Tensor([4, 5, 1])
    pt3h = torch.Tensor([7, 8, 1])
    ptsh = torch.cat(
        [pt1h.unsqueeze(dim=0),
         pt2h.unsqueeze(dim=0),
         pt3h.unsqueeze(dim=0)],
        dim=0)  # 3x3
    ptshbatch = ptsh.unsqueeze(dim=0).expand(5, 3, 3)

    T1T1 = torch.bmm(T1, T1)
    T1T1_SE2 = T1_SE2.dot(T1_SE2).as_matrix()
    assert T1T1_SE2.shape == T1.shape and utils.allclose(T1T1_SE2, T1T1)

    T1T2 = torch.matmul(T1, T2)
    T1T2_SE2 = T1_SE2.dot(T2_SE2).as_matrix()
    assert T1T2_SE2.shape == T1.shape and utils.allclose(T1T2_SE2, T1T2)

    T1pt1 = torch.matmul(T1[:, 0:2, 0:2], pt1) + T1[:, 0:2, 2]
    T1pt1_SE2 = T1_SE2.dot(pt1)
    assert T1pt1_SE2.shape == (T1.shape[0], pt1.shape[0]) \
        and utils.allclose(T1pt1_SE2, T1pt1)

    T1pt1h = torch.matmul(T1, pt1h)
    T1pt1h_SE2 = T1_SE2.dot(pt1h)
    assert T1pt1h_SE2.shape == (T1.shape[0], pt1h.shape[0]) \
        and utils.allclose(T1pt1h_SE2, T1pt1h) \
        and utils.allclose(T1pt1h_SE2[:, 0:2], T1pt1_SE2)

    T1pt2 = torch.matmul(T1[:, 0:2, 0:2], pt2) + T1[:, 0:2, 2]
    T1pt2_SE2 = T1_SE2.dot(pt2)
    assert T1pt2_SE2.shape == (T1.shape[0], pt2.shape[0]) \
        and utils.allclose(T1pt2_SE2, T1pt2)

    T1pt2h = torch.matmul(T1, pt2h)
    T1pt2h_SE2 = T1_SE2.dot(pt2h)
    assert T1pt2h_SE2.shape == (T1.shape[0], pt2h.shape[0]) \
        and utils.allclose(T1pt2h_SE2, T1pt2h) \
        and utils.allclose(T1pt2h_SE2[:, 0:2], T1pt2_SE2)

    T1pts = torch.bmm(T1[:, 0:2, 0:2],
                      pts.unsqueeze(dim=0).expand(
                          T1.shape[0],
                          pts.shape[0],
                          pts.shape[1]).transpose(2, 1)).transpose(2, 1) + \
        T1[:, 0:2, 2].unsqueeze(dim=1).expand(
            T1.shape[0], pts.shape[0], pts.shape[1])
    T1pts_SE2 = T1_SE2.dot(pts)
    assert T1pts_SE2.shape == (T1.shape[0], pts.shape[0], pts.shape[1]) \
        and utils.allclose(T1pts_SE2, T1pts) \
        and utils.allclose(T1pt1, T1pts[:, 0, :]) \
        and utils.allclose(T1pt2, T1pts[:, 1, :])

    T1ptsh = torch.bmm(
        T1,
        ptsh.unsqueeze(dim=0).expand(T1.shape[0], ptsh.shape[0],
                                     ptsh.shape[1]).transpose(2, 1)).transpose(
                                         2, 1)
    T1ptsh_SE2 = T1_SE2.dot(ptsh)
    assert T1ptsh_SE2.shape == (T1.shape[0], ptsh.shape[0], ptsh.shape[1]) \
        and utils.allclose(T1ptsh_SE2, T1ptsh) \
        and utils.allclose(T1pt1h, T1ptsh[:, 0, :]) \
        and utils.allclose(T1pt2h, T1ptsh[:, 1, :]) \
        and utils.allclose(T1ptsh_SE2[:, :, 0:2], T1pts_SE2)

    T1ptsbatch = torch.bmm(T1[:, 0:2, 0:2],
                           ptsbatch.transpose(2, 1)).transpose(2, 1) + \
        T1[:, 0:2, 2].unsqueeze(dim=1).expand(ptsbatch.shape)
    T1ptsbatch_SE2 = T1_SE2.dot(ptsbatch)
    assert T1ptsbatch_SE2.shape == ptsbatch.shape \
        and utils.allclose(T1ptsbatch_SE2, T1ptsbatch) \
        and utils.allclose(T1pt1, T1ptsbatch[:, 0, :]) \
        and utils.allclose(T1pt2, T1ptsbatch[:, 1, :])

    T1ptshbatch = torch.bmm(T1, ptshbatch.transpose(2, 1)).transpose(2, 1)
    T1ptshbatch_SE2 = T1_SE2.dot(ptshbatch)
    assert T1ptshbatch_SE2.shape == ptshbatch.shape \
        and utils.allclose(T1ptshbatch_SE2, T1ptshbatch) \
        and utils.allclose(T1pt1h, T1ptshbatch[:, 0, :]) \
        and utils.allclose(T1pt2h, T1ptshbatch[:, 1, :]) \
        and utils.allclose(T1ptshbatch_SE2[:, :, 0:2], T1ptsbatch_SE2)

    T2ptsbatch = torch.matmul(T2[0:2, 0:2],
                              ptsbatch.transpose(2, 1)).transpose(2, 1) + \
        T1[:, 0:2, 2].unsqueeze(dim=1).expand(ptsbatch.shape)
    T2ptsbatch_SE2 = T2_SE2.dot(ptsbatch)
    assert T2ptsbatch_SE2.shape == ptsbatch.shape \
        and utils.allclose(T2ptsbatch_SE2, T2ptsbatch) \
        and utils.allclose(T2_SE2.dot(pt1), T2ptsbatch[:, 0, :]) \
        and utils.allclose(T2_SE2.dot(pt2), T2ptsbatch[:, 1, :])

    T2ptshbatch = torch.matmul(T2, ptshbatch.transpose(2, 1)).transpose(2, 1)
    T2ptshbatch_SE2 = T2_SE2.dot(ptshbatch)
    assert T2ptshbatch_SE2.shape == ptshbatch.shape \
        and utils.allclose(T2ptshbatch_SE2, T2ptshbatch) \
        and utils.allclose(T2_SE2.dot(pt1h), T2ptshbatch[:, 0, :]) \
        and utils.allclose(T2_SE2.dot(pt2h), T2ptshbatch[:, 1, :]) \
        and utils.allclose(T2ptshbatch_SE2[:, :, 0:2], T2ptsbatch_SE2)