Exemplo n.º 1
0
    def __init__(self,
                 p_value,
                 test_statistic,
                 name=None,
                 test_name=None,
                 **kwargs):
        self.p_value = p_value
        self.test_statistic = test_statistic
        self.test_name = test_name

        self._p_value = utils._to_1d_array(p_value)
        self._test_statistic = utils._to_1d_array(test_statistic)

        assert len(self._p_value) == len(self._test_statistic)

        if name is not None:
            self.name = utils._to_list(name)
            assert len(self.name) == len(self._test_statistic)
        else:
            self.name = None

        for kw, value in kwargs.items():
            setattr(self, kw, value)

        kwargs["test_name"] = test_name
        self._kwargs = kwargs
Exemplo n.º 2
0
    def preprocess_df(self, df, event_col, start_col, stop_col, weights_col,
                      id_col):
        df = df.copy()

        if not (event_col in df and start_col in df and stop_col in df):
            raise KeyError(
                "A column specified in the call to `fit` does not exist in the DataFrame provided."
            )

        if weights_col is None:
            self.weights_col = None
            assert "__weights" not in df.columns, "__weights is an internal lifelines column, please rename your column first."
            df["__weights"] = 1.0
        else:
            self.weights_col = weights_col
            if (df[weights_col] <= 0).any():
                raise ValueError("values in weights_col must be positive.")

        df = df.rename(
            columns={
                event_col: "event",
                start_col: "start",
                stop_col: "stop",
                weights_col: "__weights"
            })
        if self.strata is not None and self.id_col is not None:
            df = df.set_index(_to_list(self.strata) + [id_col])
            df = df.sort_index()
        elif self.strata is not None and self.id_col is None:
            df = df.set_index(_to_list(self.strata))
        elif self.strata is None and self.id_col is not None:
            df = df.set_index([id_col])

        events, start, stop = (
            pass_for_numeric_dtypes_or_raise_array(
                df.pop("event")).astype(bool),
            df.pop("start"),
            df.pop("stop"),
        )
        weights = df.pop("__weights").astype(float)

        df = df.astype(float)
        self._check_values(df, events, start, stop)
        return df, events, start, stop, weights
    def plot(self, columns=None, loc=None, iloc=None, ax=None, **kwargs):
        """"
        A wrapper around plotting. Matplotlib plot arguments can be passed in, plus:

        Parameters
        -----------
        columns: string or list-like, optional
          If not empty, plot a subset of columns from the ``cumulative_hazards_``. Default all.
        loc:

        iloc: slice, optional
          specify a location-based subsection of the curves to plot, ex:
                 ``.plot(iloc=slice(0,10))`` will plot the first 10 time points.
        """
        from matplotlib import pyplot as plt

        assert loc is None or iloc is None, "Cannot set both loc and iloc in call to .plot"

        def shaded_plot(ax, x, y, y_upper, y_lower, **kwargs):
            (base_line,) = ax.plot(x, y, drawstyle="steps-post", **kwargs)
            ax.fill_between(x, y_lower, y2=y_upper, alpha=0.25, color=base_line.get_color(), linewidth=1.0, step="post")

        def create_df_slicer(loc, iloc):
            get_method = "loc" if loc is not None else "iloc"

            if iloc is None and loc is None:
                user_submitted_ix = slice(0, None)
            else:
                user_submitted_ix = loc if loc is not None else iloc

            return lambda df: getattr(df, get_method)[user_submitted_ix]

        subset_df = create_df_slicer(loc, iloc)

        if not columns:
            columns = self.cumulative_hazards_.columns
        else:
            columns = _to_list(columns)

        if ax is None:
            ax = plt.gca()

        x = subset_df(self.cumulative_hazards_).index.values.astype(float)

        for column in columns:
            ci = (1 - self.alpha) * 100
            y = subset_df(self.cumulative_hazards_[column]).values
            index = subset_df(self.cumulative_hazards_[column]).index
            y_upper = subset_df(self.confidence_intervals_[column].loc["%g%% upper-bound" % ci]).values
            y_lower = subset_df(self.confidence_intervals_[column].loc["%g%% lower-bound" % ci]).values
            shaded_plot(ax, x, y, y_upper, y_lower, label=column, **kwargs)

        plt.hlines(0, index.min() - 1, index.max(), color="k", linestyles="--", alpha=0.5)

        ax.legend()
        return ax
    def plot(self, columns=None, loc=None, iloc=None, **kwargs):
        """"
        A wrapper around plotting. Matplotlib plot arguments can be passed in, plus:

        Parameters
        -----------
        columns: string or list-like, optional
          If not empty, plot a subset of columns from the ``cumulative_hazards_``. Default all.
        loc:

        iloc: slice, optional
          specify a location-based subsection of the curves to plot, ex:
                 ``.plot(iloc=slice(0,10))`` will plot the first 10 time points.
        """
        from matplotlib import pyplot as plt

        assert loc is None or iloc is None, "Cannot set both loc and iloc in call to .plot"

        def shaded_plot(ax, x, y, y_upper, y_lower, **kwargs):
            base_line, = ax.plot(x, y, drawstyle="steps-post", **kwargs)
            ax.fill_between(x, y_lower, y2=y_upper, alpha=0.25, color=base_line.get_color(), linewidth=1.0, step="post")

        def create_df_slicer(loc, iloc):
            get_method = "loc" if loc is not None else "iloc"

            if iloc is None and loc is None:
                user_submitted_ix = slice(0, None)
            else:
                user_submitted_ix = loc if loc is not None else iloc

            return lambda df: getattr(df, get_method)[user_submitted_ix]

        subset_df = create_df_slicer(loc, iloc)

        if not columns:
            columns = self.cumulative_hazards_.columns
        else:
            columns = _to_list(columns)

        set_kwargs_ax(kwargs)
        ax = kwargs.pop("ax")

        x = subset_df(self.cumulative_hazards_).index.values.astype(float)

        for column in columns:
            y = subset_df(self.cumulative_hazards_[column]).values
            index = subset_df(self.cumulative_hazards_[column]).index
            y_upper = subset_df(self.confidence_intervals_[column].loc["upper-bound"]).values
            y_lower = subset_df(self.confidence_intervals_[column].loc["lower-bound"]).values
            shaded_plot(ax, x, y, y_upper, y_lower, label=column, **kwargs)

        plt.hlines(0, index.min() - 1, index.max(), color="k", linestyles="--", alpha=0.5)

        ax.legend()
        return ax
Exemplo n.º 5
0
    def fit(
        self,
        df,
        id_col,
        event_col,
        start_col="start",
        stop_col="stop",
        weights_col=None,
        show_progress=False,
        step_size=None,
        robust=False,
        strata=None,
        initial_point=None,
    ):  # pylint: disable=too-many-arguments
        """
        Fit the Cox Proportional Hazard model to a time varying dataset. Tied survival times
        are handled using Efron's tie-method.

        Parameters
        -----------
        df: DataFrame
            a Pandas DataFrame with necessary columns `duration_col` and
           `event_col`, plus other covariates. `duration_col` refers to
           the lifetimes of the subjects. `event_col` refers to whether
           the 'death' events was observed: 1 if observed, 0 else (censored).
        id_col: string
            A subject could have multiple rows in the DataFrame. This column contains
           the unique identifier per subject.
        event_col: string
           the column in DataFrame that contains the subjects' death
           observation. If left as None, assume all individuals are non-censored.
        start_col: string
            the column that contains the start of a subject's time period.
        stop_col: string
            the column that contains the end of a subject's time period.
        weights_col: string, optional
            the column that contains (possibly time-varying) weight of each subject-period row.
        show_progress: since the fitter is iterative, show convergence
           diagnostics.
        robust: boolean, optional (default: True)
            Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle
          ties, so if there are high number of ties, results may significantly differ. See
          "The Robust Inference for the Cox Proportional Hazards Model", Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078
        step_size: float, optional
            set an initial step size for the fitting algorithm.
        strata: list or string, optional
            specify a column or list of columns n to use in stratification. This is useful if a
            categorical covariate does not obey the proportional hazard assumption. This
            is used similar to the `strata` expression in R.
            See http://courses.washington.edu/b515/l17.pdf.
        initial_point: (d,) numpy array, optional
            initialize the starting point of the iterative
            algorithm. Default is the zero vector.

        Returns
        --------
        self: CoxTimeVaryingFitter
            self, with additional properties like ``hazards_`` and ``print_summary``

        """
        self.strata = coalesce(strata, self.strata)
        self.robust = robust
        if self.robust:
            raise NotImplementedError("Not available yet.")

        self.event_col = event_col
        self.id_col = id_col
        self.stop_col = stop_col
        self.start_col = start_col
        self._time_fit_was_called = datetime.utcnow().strftime(
            "%Y-%m-%d %H:%M:%S")

        df = df.copy()

        if not (id_col in df and event_col in df and start_col in df
                and stop_col in df):
            raise KeyError(
                "A column specified in the call to `fit` does not exist in the DataFrame provided."
            )

        if weights_col is None:
            self.weights_col = None
            assert (
                "__weights" not in df.columns
            ), "__weights is an internal lifelines column, please rename your column first."
            df["__weights"] = 1.0
        else:
            self.weights_col = weights_col
            if (df[weights_col] <= 0).any():
                raise ValueError("values in weights_col must be positive.")

        df = df.rename(
            columns={
                id_col: "id",
                event_col: "event",
                start_col: "start",
                stop_col: "stop",
                weights_col: "__weights"
            })

        if self.strata is None:
            df = df.set_index("id")
        else:
            df = df.set_index(_to_list(self.strata) +
                              ["id"])  # TODO: needs to be a list
            df = df.sort_index()

        events, start, stop = (
            pass_for_numeric_dtypes_or_raise_array(
                df.pop("event")).astype(bool),
            df.pop("start"),
            df.pop("stop"),
        )
        weights = df.pop("__weights").astype(float)

        df = df.astype(float)
        self._check_values(df, events, start, stop)

        self._norm_mean = df.mean(0)
        self._norm_std = df.std(0)

        params_ = self._newton_rhaphson(
            normalize(df, self._norm_mean, self._norm_std),
            events,
            start,
            stop,
            weights,
            initial_point=initial_point,
            show_progress=show_progress,
            step_size=step_size,
        )

        self.params_ = pd.Series(params_, index=df.columns,
                                 name="coef") / self._norm_std
        self.hazard_ratios_ = pd.Series(np.exp(self.params_),
                                        index=df.columns,
                                        name="exp(coef)")
        self.variance_matrix_ = -inv(self._hessian_) / np.outer(
            self._norm_std, self._norm_std)
        self.standard_errors_ = self._compute_standard_errors(
            normalize(df, self._norm_mean, self._norm_std), events, start,
            stop, weights)
        self.confidence_intervals_ = self._compute_confidence_intervals()
        self.baseline_cumulative_hazard_ = self._compute_cumulative_baseline_hazard(
            df, events, start, stop, weights)
        self.baseline_survival_ = self._compute_baseline_survival()
        self.event_observed = events
        self.start_stop_and_events = pd.DataFrame({
            "event": events,
            "start": start,
            "stop": stop
        })
        self.weights = weights

        self._n_examples = df.shape[0]
        self._n_unique = df.index.unique().shape[0]
        return self
    def fit(
        self,
        df,
        id_col,
        event_col,
        start_col="start",
        stop_col="stop",
        weights_col=None,
        show_progress=False,
        step_size=None,
        robust=False,
        strata=None,
        initial_point=None,
    ):  # pylint: disable=too-many-arguments
        """
        Fit the Cox Proportional Hazard model to a time varying dataset. Tied survival times
        are handled using Efron's tie-method.

        Parameters
        -----------
        df: DataFrame
            a Pandas DataFrame with necessary columns `duration_col` and
           `event_col`, plus other covariates. `duration_col` refers to
           the lifetimes of the subjects. `event_col` refers to whether
           the 'death' events was observed: 1 if observed, 0 else (censored).
        id_col: string
            A subject could have multiple rows in the DataFrame. This column contains
           the unique identifier per subject.
        event_col: string
           the column in DataFrame that contains the subjects' death
           observation. If left as None, assume all individuals are non-censored.
        start_col: string
            the column that contains the start of a subject's time period.
        stop_col: string
            the column that contains the end of a subject's time period.
        weights_col: string, optional
            the column that contains (possibly time-varying) weight of each subject-period row.
        show_progress: since the fitter is iterative, show convergence
           diagnostics.
        robust: boolean, optional (default: True)
            Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle
          ties, so if there are high number of ties, results may significantly differ. See
          "The Robust Inference for the Cox Proportional Hazards Model", Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078
        step_size: float, optional
            set an initial step size for the fitting algorithm.
        strata: list or string, optional
            specify a column or list of columns n to use in stratification. This is useful if a
            categorical covariate does not obey the proportional hazard assumption. This
            is used similar to the `strata` expression in R.
            See http://courses.washington.edu/b515/l17.pdf.
        initial_point: (d,) numpy array, optional
            initialize the starting point of the iterative
            algorithm. Default is the zero vector.

        Returns
        --------
        self: CoxTimeVaryingFitter
            self, with additional properties like ``hazards_`` and ``print_summary``

        """
        self.strata = coalesce(strata, self.strata)
        self.robust = robust
        if self.robust:
            raise NotImplementedError("Not available yet.")

        self.event_col = event_col
        self.id_col = id_col
        self.stop_col = stop_col
        self.start_col = start_col
        self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")

        df = df.copy()

        if not (id_col in df and event_col in df and start_col in df and stop_col in df):
            raise KeyError("A column specified in the call to `fit` does not exist in the DataFrame provided.")

        if weights_col is None:
            self.weights_col = None
            assert (
                "__weights" not in df.columns
            ), "__weights is an internal lifelines column, please rename your column first."
            df["__weights"] = 1.0
        else:
            self.weights_col = weights_col
            if (df[weights_col] <= 0).any():
                raise ValueError("values in weights_col must be positive.")

        df = df.rename(
            columns={id_col: "id", event_col: "event", start_col: "start", stop_col: "stop", weights_col: "__weights"}
        )

        if self.strata is None:
            df = df.set_index("id")
        else:
            df = df.set_index(_to_list(self.strata) + ["id"])  # TODO: needs to be a list
            df = df.sort_index()

        events, start, stop = (
            pass_for_numeric_dtypes_or_raise_array(df.pop("event")).astype(bool),
            df.pop("start"),
            df.pop("stop"),
        )
        weights = df.pop("__weights").astype(float)

        df = df.astype(float)
        self._check_values(df, events, start, stop)

        self._norm_mean = df.mean(0)
        self._norm_std = df.std(0)

        hazards_ = self._newton_rhaphson(
            normalize(df, self._norm_mean, self._norm_std),
            events,
            start,
            stop,
            weights,
            initial_point=initial_point,
            show_progress=show_progress,
            step_size=step_size,
        )

        self.hazards_ = pd.Series(hazards_, index=df.columns, name="coef") / self._norm_std
        self.variance_matrix_ = -inv(self._hessian_) / np.outer(self._norm_std, self._norm_std)
        self.standard_errors_ = self._compute_standard_errors(
            normalize(df, self._norm_mean, self._norm_std), events, start, stop, weights
        )
        self.confidence_intervals_ = self._compute_confidence_intervals()
        self.baseline_cumulative_hazard_ = self._compute_cumulative_baseline_hazard(df, events, start, stop, weights)
        self.baseline_survival_ = self._compute_baseline_survival()
        self.event_observed = events
        self.start_stop_and_events = pd.DataFrame({"event": events, "start": start, "stop": stop})
        self.weights = weights

        self._n_examples = df.shape[0]
        self._n_unique = df.index.unique().shape[0]
        return self
Exemplo n.º 7
0
    def plot_covariate_groups(self,
                              covariates,
                              values,
                              plot_baseline=True,
                              **kwargs):
        """
        Produces a visual representation comparing the baseline survival curve of the model versus
        what happens when a covariate(s) is varied over values in a group. This is useful to compare
        subjects' survival as we vary covariate(s), all else being held equal. The baseline survival
        curve is equal to the predicted survival curve at all average values in the original dataset.

        Parameters
        ----------
        covariates: string or list
            a string (or list of strings) of the covariate in the original dataset that we wish to vary.
        values: 1d or 2d iterable
            an iterable of the values we wish the covariate to take on.
        plot_baseline: bool
            also display the baseline survival, defined as the survival at the mean of the original dataset.
        kwargs:
            pass in additional plotting commands

        Returns
        -------
        ax: matplotlib axis, or list of axis'
            the matplotlib axis that be edited.

        Examples
        ---------

        >>> from lifelines import datasets, WeibullAFTFitter
        >>> rossi = datasets.load_rossi()
        >>> wf = WeibullAFTFitter().fit(rossi, 'week', 'arrest')
        >>> wf.plot_covariate_groups('prio', values=np.arange(0, 15), cmap='coolwarm')

        >>> # multiple variables at once
        >>> wf.plot_covariate_groups(['prio', 'paro'], values=[[0, 0], [5, 0], [10, 0], [0, 1], [5, 1], [10, 1]], cmap='coolwarm')

        >>> # if you have categorical variables, you can simply things:
        >>> wf.plot_covariate_groups(['dummy1', 'dummy2', 'dummy3'], values=np.eye(3))


        """
        from matplotlib import pyplot as plt

        covariates = _to_list(covariates)
        values = _to_array(values)
        if len(values.shape) == 1:
            values = values[None, :].T

        if len(covariates) != values.shape[1]:
            raise ValueError(
                "The number of covariates must equal to second dimension of the values array."
            )

        original_columns = self.params_.index.get_level_values(1)
        for covariate in covariates:
            if covariate not in original_columns:
                raise KeyError(
                    "covariate `%s` is not present in the original dataset" %
                    covariate)

        ax = kwargs.pop("ax", None) or plt.figure().add_subplot(111)

        # model X
        x_bar = self._norm_mean.to_frame().T
        X = pd.concat([x_bar] * values.shape[0])
        if np.array_equal(np.eye(len(covariates)), values):
            X.index = ["%s=1" % c for c in covariates]
        else:
            X.index = [
                ", ".join("%s=%g" % (c, v) for (c, v) in zip(covariates, row))
                for row in values
            ]
        for covariate, value in zip(covariates, values.T):
            X[covariate] = value

        # model ancillary X
        x_bar_anc = self._norm_mean_ancillary.to_frame().T
        ancillary_X = pd.concat([x_bar_anc] * values.shape[0])
        for covariate, value in zip(covariates, values.T):
            ancillary_X[covariate] = value

        if self.fit_intercept:
            X["_intercept"] = 1.0
            ancillary_X["_intercept"] = 1.0

        self.predict_survival_function(X,
                                       ancillary_X=ancillary_X).plot(ax=ax,
                                                                     **kwargs)
        if plot_baseline:
            self.predict_survival_function(
                x_bar, ancillary_X=x_bar_anc).rename(columns={
                    0: "baseline survival"
                }).plot(ax=ax, ls=":", color="k")
        return ax