Exemplo n.º 1
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.lights = []

        # auxiliary storage for waypoints, to allow for faster search of closest point
        self.waypoints_2d = None
        self.waypoint_tree = None
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0
        self.traffic_light_waypoints = None
        self.has_image = False

        rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                         self.traffic_cb)
        rospy.Subscriber('/image_color', Image, self.image_cb)

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.waypoint_tree = cKDTree(self.waypoints_2d, leafsize=1)

        self.traffic_light_waypoints = [
            self.get_closest_waypoint(stop_line[0], stop_line[1], False)
            for stop_line in self.config['stop_line_positions']
        ]

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg

        light_wp = -1
        state = TrafficLight.UNKNOWN
        if self.pose and self.waypoint_tree:
            light_wp, state = self.process_traffic_lights()
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED or state == TrafficLight.YELLOW else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y, forward):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            x: x-coordinate of position to match a waypoint to
            y: y-coordinate of position to match a waypoint to
            forward: if true then find a closest waypoint ahead of (x,y)
                     if false then find a closest waypoint behind (x,y)

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        closest_idx = self.waypoint_tree.query([x, y], 1)[1]

        # Check if closest is ahead or behind vehicle
        closest_coord = self.waypoints_2d[closest_idx]
        prev_coord = self.waypoints_2d[closest_idx - 1]

        # Equation for hyperplane through closest_coords
        cl_vect = np.array(closest_coord)
        prev_vect = np.array(prev_coord)
        pos_vect = np.array([x, y])

        val = np.dot(cl_vect - prev_vect, pos_vect - cl_vect)

        if val > 0 and forward:
            closest_idx = (closest_idx + 1) % len(self.waypoints_2d)
        elif val < 0 and not forward:
            closest_idx = (closest_idx - 1) % len(self.waypoints_2d)

        return closest_idx

    def get_light_state(self):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """

        if self.light_classifier is None:
            return TrafficLight.RED

        if not self.has_image:
            return TrafficLight.UNKNOWN

        if hasattr(self.camera_image, 'encoding'):
            if self.camera_image.encoding == '8UC3':
                self.camera_image.encoding = "rgb8"
        else:
            self.camera_image.encoding = 'rgb8'

        input_image = self.bridge.imgmsg_to_cv2(self.camera_image, "rgb8")
        light_state = self.light_classifier.get_class(input_image)

        #print("predicted state: ", light_state)
        #print("ground thruth: ", light.state)

        return light_state

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        car_idx = self.get_closest_waypoint(self.pose.pose.position.x,
                                            self.pose.pose.position.y, True)

        # find the closest visible traffic light (if one exists)
        diff = len(self.waypoints.waypoints)
        light_idx = None
        for temp_idx in self.traffic_light_waypoints:

            # Find closest stopline waypoint index
            dist = temp_idx - car_idx
            if dist >= 0 and dist < diff:
                diff = dist
                light_idx = temp_idx

        if light_idx and diff < 200:
            state = self.get_light_state()
            return light_idx, state

        return -1, TrafficLight.UNKNOWN
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.waypoints_2d = None
        self.waypoint_tree = None
        self.camera_image = None
        self.has_image = None
        self.lights = []

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            # print("*** RED LIGHT! *** ")
            # print("State Count: " + str(self.state_count))
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            x: longitudinal position to match a waypoint to
            y: lateral position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        closest_idx = -1

        if self.waypoint_tree is not None:
            closest_idx = self.waypoint_tree.query([x, y], 1)[1]

            # check if closest point is ahead or behind of ego
            closest_coord = self.waypoints_2d[closest_idx]
            prev_coord = self.waypoints_2d[closest_idx - 1]

            # hyperplane eqn thru closest coords
            cl_vect = np.array(closest_coord)
            prev_vect = np.array(prev_coord)
            pos_vect = np.array([x, y])

            val = np.dot(cl_vect - prev_vect, pos_vect - cl_vect)

            if val > 0:
                closest_idx = closest_idx + 1 % len(self.waypoints_2d)

        return closest_idx

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        if self.light_classifier is None:
            return TrafficLight.RED

        if not self.has_image:
            return TrafficLight.UNKNOWN

        if hasattr(self.camera_image, 'encoding'):
            if self.camera_image.encoding == '8UC3':
                self.camera_image.encoding = "rgb8"
        else:
            self.camera_image.encoding = 'rgb8'

        img = self.bridge.imgmsg_to_cv2(self.camera_image, "rgb8")
        light_state = self.light_classifier.get_class(img)

        #print("predicted state: ", light_state)
        #print("ground thruth: ", light.state)

        return light_state  #light.state

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        closest_light = None
        line_wp_idx = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']

        if self.pose and self.waypoints:
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x,
                                                   self.pose.pose.position.y)

            #TODO find the closest visible traffic light (if one exists)
            diff = len(self.waypoints.waypoints)
            for i, light in enumerate(self.lights):
                # get stop line wp idx
                line = stop_line_positions[i]
                temp_wp_idx = self.get_closest_waypoint(line[0], line[1])
                # find closest stop line waypoint idx
                d = temp_wp_idx - car_wp_idx
                if d >= 0 and d < diff:
                    diff = d
                    closest_light = light
                    line_wp_idx = temp_wp_idx

        if closest_light:
            state = self.get_light_state(closest_light)
            return line_wp_idx, state

        return -1, TrafficLight.UNKNOWN