Exemplo n.º 1
0
    def write_output_url(self,
                         outdir,
                         row_number=None,
                         counts=1,
                         root_name="gstlal_inspiral_bank_SNRs"):
        """Writing the LIGO_LW xmldoc to disk.

		Args:
		    outdir (str): The output diretory.
		    row_number (int, default=None): The row number of the SNR to be outputed. Default=None is to output all.
		    root_name (str, default="gstlal_inspiral_bank_SNRs"): The root name of the xml document.

		Return:
		    xmldoc: The file object representing the xmldoc.

		"""
        assert counts >= 1, "Number of rows must be larger than or equals to 1."

        for instrument, bank_SNRs in self.bank_snrs_dict.items():
            # create root
            xmldoc = ligolw.Document()
            root = xmldoc.appendChild(ligolw.LIGO_LW())
            root.Name = root_name

            # add SNR and autocorrelation branches
            for bank_SNR in bank_SNRs:
                branch = root.appendChild(ligolw.LIGO_LW())
                branch.Name = "bank_SNR"
                branch.appendChild(
                    ligolw_param.Param.from_pyvalue('bank_id',
                                                    bank_SNR.bank_id))
                self._append_content(branch,
                                     bank_SNR,
                                     instrument,
                                     row_number=row_number,
                                     counts=counts)

            if row_number is not None and len(bank_SNRs) == 1 and counts == 1:
                outname = "%s-%s_bank_SNR_%d_%d-%d-%d.xml.gz" % (
                    instrument, bank_SNRs[0].method, bank_SNRs[0].bank_number,
                    row_number, bank_SNRs[0].start, bank_SNRs[0].duration)
            else:
                outname = "%s-%s_bank_SNR_%s_%s-%d-%d.xml.gz" % (
                    instrument, bank_SNRs[0].method, "ALL", "ALL",
                    bank_SNRs[0].start, bank_SNRs[0].duration)
            write_url(xmldoc,
                      os.path.join(outdir, outname),
                      verbose=self.verbose)
        return xmldoc
Exemplo n.º 2
0
def gen_likelihood_control(coinc_params_distributions,
                           seglists,
                           name=u"lalapps_burca_tailor",
                           comment=u""):
    xmldoc = ligolw.Document()
    node = xmldoc.appendChild(ligolw.LIGO_LW())

    process = ligolw_process.register_to_xmldoc(xmldoc,
                                                program=process_program_name,
                                                paramdict={},
                                                version=__version__,
                                                cvs_repository="lscsoft",
                                                cvs_entry_time=__date__,
                                                comment=comment)
    coinc_params_distributions.process_id = process.process_id
    ligolw_search_summary.append_search_summary(xmldoc,
                                                process,
                                                ifos=seglists.keys(),
                                                inseg=seglists.extent_all(),
                                                outseg=seglists.extent_all())

    node.appendChild(coinc_params_distributions.to_xml(name))

    ligolw_process.set_process_end_time(process)

    return xmldoc
Exemplo n.º 3
0
def write_bank(filename, banks, verbose=False):
    """Write template bank to LIGO_LW xml file."""
    xmldoc = ligolw.Document()
    head = xmldoc.appendChild(ligolw.LIGO_LW())
    head.Name = u"gstlal_template_bank"

    for bank in banks:
        cloned_table = bank.sngl_inspiral_table.copy()
        cloned_table.extend(bank.sngl_inspiral_table)
        head.appendChild(cloned_table)

        head.appendChild(
            ligolw_param.Param.from_pyvalue('template_bank_filename',
                                            bank.template_bank_filename))
        head.appendChild(
            ligolw_param.Param.from_pyvalue('sample_rate', bank.sample_rate))
        head.appendChild(
            ligolw_param.Param.from_pyvalue('bank_id', bank.bank_id))
        head.appendChild(ligolw_array.Array.build('templates', bank.templates))
        head.appendChild(
            ligolw_array.Array.build('autocorrelation_bank',
                                     bank.autocorrelation_bank))
        head.appendChild(
            ligolw_array.Array.build('autocorrelation_mask',
                                     bank.autocorrelation_mask))
        head.appendChild(
            ligolw_array.Array.build('sigmasq', numpy.array(bank.sigmasq)))

    ligolw_utils.write_filename(xmldoc,
                                filename,
                                gz=filename.endswith('.gz'),
                                verbose=verbose)
Exemplo n.º 4
0
	def __getitem__(self, coinc_event_id):
		newxmldoc = ligolw.Document()
		ligolw_elem = newxmldoc.appendChild(ligolw.LIGO_LW())

		# when making these, we can't use .copy() method of Table
		# instances because we need to ensure we have a Table
		# subclass, not a DBTable subclass
		new_process_table = ligolw_elem.appendChild(lsctables.New(lsctables.ProcessTable, self.process_table.columnnamesreal))
		new_process_params_table = ligolw_elem.appendChild(lsctables.New(lsctables.ProcessParamsTable, self.process_params_table.columnnamesreal))
		new_sngl_inspiral_table = ligolw_elem.appendChild(lsctables.New(lsctables.SnglInspiralTable, self.sngl_inspiral_table.columnnamesreal))
		new_coinc_def_table = ligolw_elem.appendChild(lsctables.New(lsctables.CoincDefTable, self.coinc_def_table.columnnamesreal))
		new_coinc_event_table = ligolw_elem.appendChild(lsctables.New(lsctables.CoincTable, self.coinc_event_table.columnnamesreal))
		new_coinc_inspiral_table = ligolw_elem.appendChild(lsctables.New(lsctables.CoincInspiralTable, self.coinc_inspiral_table.columnnamesreal))
		new_coinc_event_map_table = ligolw_elem.appendChild(lsctables.New(lsctables.CoincMapTable, self.coinc_event_map_table.columnnamesreal))
		new_time_slide_table = ligolw_elem.appendChild(lsctables.New(lsctables.TimeSlideTable, self.time_slide_table.columnnamesreal))

		new_coinc_def_table.append(self.coinc_def)
		coincevent = self.coinc_event_index[coinc_event_id]
		new_time_slide_table.extend(self.time_slide_index[coincevent.time_slide_id])

		new_sngl_inspiral_table.extend(self.sngl_inspiral_index[coinc_event_id])
		new_coinc_event_table.append(coincevent)
		new_coinc_event_map_table.extend(self.coinc_event_maps_index[coinc_event_id])
		new_coinc_inspiral_table.append(self.coinc_inspiral_index[coinc_event_id])

		for process_id in set(new_sngl_inspiral_table.getColumnByName("process_id")) | set(new_coinc_event_table.getColumnByName("process_id")) | set(new_time_slide_table.getColumnByName("process_id")):
			# process row is required
			new_process_table.append(self.process_index[process_id])
			try:
				new_process_params_table.extend(self.process_params_index[process_id])
			except KeyError:
				# process_params rows are optional
				pass

		return newxmldoc
Exemplo n.º 5
0
 def to_xml(self, name):
     xml = ligolw.LIGO_LW(
         {u"Name": u"%s:%s" % (name, self.ligo_lw_name_suffix)})
     xml.appendChild(self.numerator.to_xml("numerator"))
     xml.appendChild(self.denominator.to_xml("denominator"))
     xml.appendChild(self.candidates.to_xml("candidates"))
     return xml
Exemplo n.º 6
0
    def to_xml(self, name):
        """
		Serialize this RankingStat object to an XML fragment and
		return the root element of the resulting XML tree.
		"""
        xml = ligolw.LIGO_LW(
            {u"Name": u"%s:%s" % (name, self.ligo_lw_name_suffix)})
        xml.appendChild(self.numerator.to_xml("numerator"))
        xml.appendChild(self.denominator.to_xml("denominator"))
        xml.appendChild(self.zerolag.to_xml("zerolag"))
        return xml
Exemplo n.º 7
0
	def to_xml(self, name = u"string_cusp"):
		# do not allow ourselves to be written to disk without our
		# PDF's internal normalization metadata being up to date
		self.noise_lr_lnpdf.normalize()
		self.signal_lr_lnpdf.normalize()
		self.candidates_lr_lnpdf.normalize()

		xml = ligolw.LIGO_LW({u"Name": u"%s:%s" % (name, self.ligo_lw_name_suffix)})
		xml.appendChild(self.noise_lr_lnpdf.to_xml(u"noise_lr_lnpdf"))
		xml.appendChild(self.signal_lr_lnpdf.to_xml(u"signal_lr_lnpdf"))
		xml.appendChild(self.candidates_lr_lnpdf.to_xml(u"candidates_lr_lnpdf"))
		xml.appendChild(ligolw_param.Param.from_pyvalue(u"segments", ",".join(segmentsUtils.to_range_strings(self.segments))))
		return xml
Exemplo n.º 8
0
def new_doc(comment=None, **kwargs):
    doc = ligolw.Document()
    doc.appendChild(ligolw.LIGO_LW())
    process = ligolw_process.register_to_xmldoc(
        doc,
        program=u"lalapps_gen_timeslides",
        paramdict=kwargs,
        version=__version__,
        cvs_repository=u"lscsoft",
        cvs_entry_time=__date__,
        comment=comment)
    doc.childNodes[0].appendChild(lsctables.New(lsctables.TimeSlideTable))

    return doc, process
Exemplo n.º 9
0
    def setUp(self):
        available_detectors = get_available_detectors()
        available_detectors = [a[0] for a in available_detectors]
        self.assertTrue('H1' in available_detectors)
        self.assertTrue('L1' in available_detectors)
        self.assertTrue('V1' in available_detectors)
        self.detectors = [Detector(d) for d in ['H1', 'L1', 'V1']]
        self.sample_rate = 4096.
        self.earth_time = lal.REARTH_SI / lal.C_SI

        # create a few random injections
        self.injections = []
        start_time = float(lal.GPSTimeNow())
        taper_choices = ('TAPER_NONE', 'TAPER_START', 'TAPER_END',
                         'TAPER_STARTEND')
        for i, taper in zip(range(20), itertools.cycle(taper_choices)):
            inj = MyInjection()
            inj.end_time = start_time + 40000 * i + \
                    numpy.random.normal(scale=3600)
            random = numpy.random.uniform
            inj.mass1 = random(low=1., high=20.)
            inj.mass2 = random(low=1., high=20.)
            inj.distance = random(low=0.9, high=1.1) * 1e6 * lal.PC_SI
            inj.latitude = numpy.arccos(random(low=-1, high=1))
            inj.longitude = random(low=0, high=2 * lal.PI)
            inj.inclination = numpy.arccos(random(low=-1, high=1))
            inj.polarization = random(low=0, high=2 * lal.PI)
            inj.taper = taper
            self.injections.append(inj)

        # create LIGOLW document
        xmldoc = ligolw.Document()
        xmldoc.appendChild(ligolw.LIGO_LW())

        # create sim inspiral table, link it to document and fill it
        sim_table = lsctables.New(lsctables.SimInspiralTable)
        xmldoc.childNodes[-1].appendChild(sim_table)
        for i in range(len(self.injections)):
            row = sim_table.RowType()
            self.injections[i].fill_sim_inspiral_row(row)
            row.process_id = 0
            row.simulation_id = i
            sim_table.append(row)

        # write document to temp file
        self.inj_file = tempfile.NamedTemporaryFile(suffix='.xml')
        ligolw_utils.write_fileobj(xmldoc, self.inj_file)
Exemplo n.º 10
0
def make_psd_xmldoc(psddict, xmldoc=None):
    """Add a set of PSDs to a LIGOLW XML document. If the document is not
    given, a new one is created first.
    """
    xmldoc = ligolw.Document() if xmldoc is None else xmldoc.childNodes[0]

    # the PSDs must be children of a LIGO_LW with name "psd"
    root_name = 'psd'
    Attributes = ligolw.sax.xmlreader.AttributesImpl
    lw = xmldoc.appendChild(ligolw.LIGO_LW(Attributes({'Name': root_name})))

    for instrument, psd in psddict.items():
        xmlseries = _build_series(psd, ('Frequency,Real', 'Frequency'), None,
                                  'deltaF', 's^-1')
        fs = lw.appendChild(xmlseries)
        fs.appendChild(LIGOLWParam.from_pyvalue('instrument', instrument))
    return xmldoc
Exemplo n.º 11
0
    def _append_content(self,
                        branch,
                        bank_SNR,
                        instrument,
                        row_number=None,
                        counts=1):
        """For internal use only."""
        slicing = slice(None, None, None) if row_number is None else slice(
            row_number, row_number + counts, 1)
        for template_id, autocorrelation, snr in zip(
                bank_SNR.template_id[slicing],
                bank_SNR.bank.autocorrelation_bank[slicing],
                bank_SNR[slicing]):
            # retrieve row number
            row_number = int(snr.name.split("_")[1])
            tmp_branch = branch.appendChild(ligolw.LIGO_LW())
            tmp_branch.Name = "SNR_and_Autocorrelation"
            tmp_branch.appendChild(
                ligolw_param.Param.from_pyvalue('template_id', template_id))

            # append timeseries and templates autocorrelation
            if snr.data.data.dtype == numpy.float32:
                tseries = tmp_branch.appendChild(
                    lal.series.build_REAL4TimeSeries(snr))
            elif snr.data.data.dtype == numpy.float64:
                tseries = tmp_branch.appendChild(
                    lal.series.build_REAL8TimeSeries(snr))
            elif snr.data.data.dtype == numpy.complex64:
                tseries = tmp_branch.appendChild(
                    lal.series.build_COMPLEX8TimeSeries(snr))
            elif snr.data.data.dtype == numpy.complex128:
                tseries = tmp_branch.appendChild(
                    lal.series.build_COMPLEX16TimeSeries(snr))
            else:
                raise ValueError("unsupported type : %s" % snr.data.data.dtype)

            # append autocorrelation_bank
            tmp_branch.appendChild(
                ligolw_array.Array.build('autocorrelation_bank',
                                         autocorrelation))

        return branch
Exemplo n.º 12
0
    def to_xml(self, name):
        # do not allow ourselves to be written to disk without our
        # PDFs' internal normalization metadata being up to date
        self.noise_lr_lnpdf.normalize()
        self.signal_lr_lnpdf.normalize()
        self.zero_lag_lr_lnpdf.normalize()

        xml = ligolw.LIGO_LW(
            {u"Name": u"%s:%s" % (name, self.ligo_lw_name_suffix)})
        xml.appendChild(self.noise_lr_lnpdf.to_xml(u"noise_lr_lnpdf"))
        xml.appendChild(self.signal_lr_lnpdf.to_xml(u"signal_lr_lnpdf"))
        xml.appendChild(self.zero_lag_lr_lnpdf.to_xml(u"zero_lag_lr_lnpdf"))
        xml.appendChild(
            ligolw_param.Param.from_pyvalue(
                u"segments",
                ",".join(segmentsUtils.to_range_strings(self.segments))))
        xml.appendChild(
            ligolw_param.Param.from_pyvalue(
                u"template_ids",
                ",".join("%d" % template_id
                         for template_id in sorted(self.template_ids))))
        return xml
Exemplo n.º 13
0
def _build_series(series, dim_names, comment, delta_name, delta_unit):
    Attributes = ligolw.sax.xmlreader.AttributesImpl
    elem = ligolw.LIGO_LW(Attributes({'Name': str(series.__class__.__name__)}))
    if comment is not None:
        elem.appendChild(ligolw.Comment()).pcdata = comment
    elem.appendChild(ligolw.Time.from_gps(series.epoch, 'epoch'))
    elem.appendChild(LIGOLWParam.from_pyvalue('f0', series.f0, unit='s^-1'))
    delta = getattr(series, delta_name)
    if numpy.iscomplexobj(series.data.data):
        data = numpy.row_stack((numpy.arange(len(series.data.data)) * delta,
                                series.data.data.real, series.data.data.imag))
    else:
        data = numpy.row_stack(
            (numpy.arange(len(series.data.data)) * delta, series.data.data))
    a = LIGOLWArray.build(series.name, data, dim_names=dim_names)
    a.Unit = str(series.sampleUnits)
    dim0 = a.getElementsByTagName(ligolw.Dim.tagName)[0]
    dim0.Unit = delta_unit
    dim0.Start = series.f0
    dim0.Scale = delta
    elem.appendChild(a)
    return elem
Exemplo n.º 14
0
def make_psd_xmldoc(psddict, xmldoc=None, root_name=u"psd"):
    """
    Construct an XML document tree representation of a dictionary of
    frequency series objects containing PSDs.  See also read_psd_xmldoc()
    for a function to parse the resulting XML documents.

    If xmldoc is None (the default), then a new XML document is created and
    the PSD dictionary added to it inside a LIGO_LW element.  If xmldoc is
    not None then the PSD dictionary is appended to the children of that
    element inside a new LIGO_LW element.  In both cases, the LIGO_LW
    element's Name attribute is set to root_name.  This will be looked for
    by read_psd_xmldoc() when parsing the PSD document.
    """
    if xmldoc is None:
        xmldoc = ligolw.Document()
    lw = xmldoc.appendChild(ligolw.LIGO_LW(Attributes({u"Name": root_name})))
    for instrument, psd in psddict.items():
        fs = lw.appendChild(build_REAL8FrequencySeries(psd))
        if instrument is not None:
            fs.appendChild(
                ligolw_param.Param.from_pyvalue(u"instrument", instrument))
    return xmldoc
Exemplo n.º 15
0
    def write(filename, samples, write_params=None, static_args=None):
        """Writes the injection samples to the given xml.

        Parameters
        ----------
        filename : str
            The name of the file to write to.
        samples : io.FieldArray
            FieldArray of parameters.
        write_params : list, optional
            Only write the given parameter names. All given names must be keys
            in ``samples``. Default is to write all parameters in ``samples``.
        static_args : dict, optional
            Dictionary mapping static parameter names to values. These are
            written to the ``attrs``.
        """
        xmldoc = ligolw.Document()
        xmldoc.appendChild(ligolw.LIGO_LW())
        simtable = lsctables.New(lsctables.SimInspiralTable)
        xmldoc.childNodes[0].appendChild(simtable)
        if static_args is None:
            static_args = {}
        if write_params is None:
            write_params = samples.fieldnames
        for ii in range(samples.size):
            sim = lsctables.SimInspiral()
            # initialize all elements to None
            for col in sim.__slots__:
                setattr(sim, col, None)
            for field in write_params:
                data = samples[ii][field]
                set_sim_data(sim, field, data)
            # set any static args
            for (field, value) in static_args.items():
                set_sim_data(sim, field, value)
            simtable.append(sim)
        ligolw_utils.write_filename(xmldoc,
                                    filename,
                                    gz=filename.endswith('gz'))
Exemplo n.º 16
0
def _build_series(series, dim_names, comment, delta_name, delta_unit):
    elem = ligolw.LIGO_LW(
        Attributes({u"Name": six.text_type(series.__class__.__name__)}))
    if comment is not None:
        elem.appendChild(ligolw.Comment()).pcdata = comment
    elem.appendChild(ligolw.Time.from_gps(series.epoch, u"epoch"))
    elem.appendChild(
        ligolw_param.Param.from_pyvalue(u"f0", series.f0, unit=u"s^-1"))
    delta = getattr(series, delta_name)
    if np.iscomplexobj(series.data.data):
        data = np.row_stack((np.arange(len(series.data.data)) * delta,
                             series.data.data.real, series.data.data.imag))
    else:
        data = np.row_stack(
            (np.arange(len(series.data.data)) * delta, series.data.data))
    a = ligolw_array.Array.build(series.name, data, dim_names=dim_names)
    a.Unit = str(series.sampleUnits)
    dim0 = a.getElementsByTagName(ligolw.Dim.tagName)[0]
    dim0.Unit = delta_unit
    dim0.Start = series.f0
    dim0.Scale = delta
    elem.appendChild(a)
    return elem
Exemplo n.º 17
0
def main(args=None):
    from ligo.lw import lsctables
    from ligo.lw import utils as ligolw_utils
    from ligo.lw import ligolw
    import lal.series
    from scipy import stats

    p = parser()
    args = p.parse_args(args)

    xmldoc = ligolw.Document()
    xmlroot = xmldoc.appendChild(ligolw.LIGO_LW())
    process = register_to_xmldoc(xmldoc, p, args)

    gwcosmo = GWCosmo(
        cosmology.default_cosmology.get_cosmology_from_string(args.cosmology))

    ns_mass_min = 1.0
    ns_mass_max = 2.0
    bh_mass_min = 5.0
    bh_mass_max = 50.0

    ns_astro_spin_min = -0.05
    ns_astro_spin_max = +0.05
    ns_astro_mass_dist = stats.norm(1.33, 0.09)
    ns_astro_spin_dist = stats.uniform(ns_astro_spin_min,
                                       ns_astro_spin_max - ns_astro_spin_min)

    ns_broad_spin_min = -0.4
    ns_broad_spin_max = +0.4
    ns_broad_mass_dist = stats.uniform(ns_mass_min, ns_mass_max - ns_mass_min)
    ns_broad_spin_dist = stats.uniform(ns_broad_spin_min,
                                       ns_broad_spin_max - ns_broad_spin_min)

    bh_astro_spin_min = -0.99
    bh_astro_spin_max = +0.99
    bh_astro_mass_dist = stats.pareto(b=1.3)
    bh_astro_spin_dist = stats.uniform(bh_astro_spin_min,
                                       bh_astro_spin_max - bh_astro_spin_min)

    bh_broad_spin_min = -0.99
    bh_broad_spin_max = +0.99
    bh_broad_mass_dist = stats.reciprocal(bh_mass_min, bh_mass_max)
    bh_broad_spin_dist = stats.uniform(bh_broad_spin_min,
                                       bh_broad_spin_max - bh_broad_spin_min)

    if args.distribution.startswith('bns_'):
        m1_min = m2_min = ns_mass_min
        m1_max = m2_max = ns_mass_max
        if args.distribution.endswith('_astro'):
            x1_min = x2_min = ns_astro_spin_min
            x1_max = x2_max = ns_astro_spin_max
            m1_dist = m2_dist = ns_astro_mass_dist
            x1_dist = x2_dist = ns_astro_spin_dist
        elif args.distribution.endswith('_broad'):
            x1_min = x2_min = ns_broad_spin_min
            x1_max = x2_max = ns_broad_spin_max
            m1_dist = m2_dist = ns_broad_mass_dist
            x1_dist = x2_dist = ns_broad_spin_dist
        else:  # pragma: no cover
            assert_not_reached()
    elif args.distribution.startswith('nsbh_'):
        m1_min = bh_mass_min
        m1_max = bh_mass_max
        m2_min = ns_mass_min
        m2_max = ns_mass_max
        if args.distribution.endswith('_astro'):
            x1_min = bh_astro_spin_min
            x1_max = bh_astro_spin_max
            x2_min = ns_astro_spin_min
            x2_max = ns_astro_spin_max
            m1_dist = bh_astro_mass_dist
            m2_dist = ns_astro_mass_dist
            x1_dist = bh_astro_spin_dist
            x2_dist = ns_astro_spin_dist
        elif args.distribution.endswith('_broad'):
            x1_min = bh_broad_spin_min
            x1_max = bh_broad_spin_max
            x2_min = ns_broad_spin_min
            x2_max = ns_broad_spin_max
            m1_dist = bh_broad_mass_dist
            m2_dist = ns_broad_mass_dist
            x1_dist = bh_broad_spin_dist
            x2_dist = ns_broad_spin_dist
        else:  # pragma: no cover
            assert_not_reached()
    elif args.distribution.startswith('bbh_'):
        m1_min = m2_min = bh_mass_min
        m1_max = m2_max = bh_mass_max
        if args.distribution.endswith('_astro'):
            x1_min = x2_min = bh_astro_spin_min
            x1_max = x2_max = bh_astro_spin_max
            m1_dist = m2_dist = bh_astro_mass_dist
            x1_dist = x2_dist = bh_astro_spin_dist
        elif args.distribution.endswith('_broad'):
            x1_min = x2_min = bh_broad_spin_min
            x1_max = x2_max = bh_broad_spin_max
            m1_dist = m2_dist = bh_broad_mass_dist
            x1_dist = x2_dist = bh_broad_spin_dist
        else:  # pragma: no cover
            assert_not_reached()
    else:  # pragma: no cover
        assert_not_reached()

    dists = (m1_dist, m2_dist, x1_dist, x2_dist)

    # Read PSDs
    psds = list(
        lal.series.read_psd_xmldoc(
            ligolw_utils.load_fileobj(
                args.reference_psd,
                contenthandler=lal.series.PSDContentHandler)).values())

    # Construct mass1, mass2, spin1z, spin2z grid.
    m1 = np.geomspace(m1_min, m1_max, 10)
    m2 = np.geomspace(m2_min, m2_max, 10)
    x1 = np.linspace(x1_min, x1_max, 10)
    x2 = np.linspace(x2_min, x2_max, 10)
    params = m1, m2, x1, x2

    # Calculate the maximum distance on the grid.
    max_z = gwcosmo.get_max_z(psds,
                              args.waveform,
                              args.f_low,
                              args.min_snr,
                              m1,
                              m2,
                              x1,
                              x2,
                              jobs=args.jobs)
    if args.max_distance is not None:
        new_max_z = cosmology.z_at_value(gwcosmo.cosmo.luminosity_distance,
                                         args.max_distance * units.Mpc)
        max_z[max_z > new_max_z] = new_max_z
    max_distance = gwcosmo.sensitive_distance(max_z).to_value(units.Mpc)

    # Find piecewise constant approximate upper bound on distance.
    max_distance = cell_max(max_distance)

    # Calculate V * T in each grid cell
    cdfs = [dist.cdf(param) for param, dist in zip(params, dists)]
    cdf_los = [cdf[:-1] for cdf in cdfs]
    cdfs = [np.diff(cdf) for cdf in cdfs]
    probs = np.prod(np.meshgrid(*cdfs, indexing='ij'), axis=0)
    probs /= probs.sum()
    probs *= 4 / 3 * np.pi * max_distance**3
    volume = probs.sum()
    probs /= volume
    probs = probs.ravel()

    volumetric_rate = args.nsamples / volume * units.year**-1 * units.Mpc**-3

    # Draw random grid cells
    dist = stats.rv_discrete(values=(np.arange(len(probs)), probs))
    indices = np.unravel_index(dist.rvs(size=args.nsamples),
                               max_distance.shape)

    # Draw random intrinsic params from each cell
    cols = {}
    cols['mass1'], cols['mass2'], cols['spin1z'], cols['spin2z'] = [
        dist.ppf(stats.uniform(cdf_lo[i], cdf[i]).rvs(size=args.nsamples))
        for i, dist, cdf_lo, cdf in zip(indices, dists, cdf_los, cdfs)
    ]

    # Swap binary components as needed to ensure that mass1 >= mass2.
    # Note that the .copy() is important.
    # See https://github.com/numpy/numpy/issues/14428
    swap = cols['mass1'] < cols['mass2']
    cols['mass1'][swap], cols['mass2'][swap] = \
        cols['mass2'][swap].copy(), cols['mass1'][swap].copy()
    cols['spin1z'][swap], cols['spin2z'][swap] = \
        cols['spin2z'][swap].copy(), cols['spin1z'][swap].copy()

    # Draw random extrinsic parameters
    cols['distance'] = stats.powerlaw(
        a=3, scale=max_distance[indices]).rvs(size=args.nsamples)
    cols['longitude'] = stats.uniform(0, 2 * np.pi).rvs(size=args.nsamples)
    cols['latitude'] = np.arcsin(stats.uniform(-1, 2).rvs(size=args.nsamples))
    cols['inclination'] = np.arccos(
        stats.uniform(-1, 2).rvs(size=args.nsamples))
    cols['polarization'] = stats.uniform(0, 2 * np.pi).rvs(size=args.nsamples)
    cols['coa_phase'] = stats.uniform(-np.pi,
                                      2 * np.pi).rvs(size=args.nsamples)
    cols['time_geocent'] = stats.uniform(1e9, units.year.to(
        units.second)).rvs(size=args.nsamples)

    # Convert from sensitive distance to redshift and comoving distance.
    # FIXME: Replace this brute-force lookup table with a solver.
    z = np.linspace(0, max_z.max(), 10000)
    ds = gwcosmo.sensitive_distance(z).to_value(units.Mpc)
    dc = gwcosmo.cosmo.comoving_distance(z).to_value(units.Mpc)
    z_for_ds = interp1d(ds, z, kind='cubic', assume_sorted=True)
    dc_for_ds = interp1d(ds, dc, kind='cubic', assume_sorted=True)
    zp1 = 1 + z_for_ds(cols['distance'])
    cols['distance'] = dc_for_ds(cols['distance'])

    # Apply redshift factor to convert from comoving distance and source frame
    # masses to luminosity distance and observer frame masses.
    for key in ['distance', 'mass1', 'mass2']:
        cols[key] *= zp1

    # Populate sim_inspiral table
    sims = xmlroot.appendChild(lsctables.New(lsctables.SimInspiralTable))
    for row in zip(*cols.values()):
        sims.appendRow(**dict(dict.fromkeys(sims.validcolumns, None),
                              process_id=process.process_id,
                              simulation_id=sims.get_next_id(),
                              waveform=args.waveform,
                              f_lower=args.f_low,
                              **dict(zip(cols.keys(), row))))

    # Record process end time.
    process.comment = str(volumetric_rate)
    process.set_end_time_now()

    # Write output file.
    write_fileobj(xmldoc, args.output)
Exemplo n.º 18
0
def create_bank_xml(flow,
                    fhigh,
                    band,
                    duration,
                    level=0,
                    ndof=1,
                    frequency_overlap=0,
                    detector=None,
                    units=utils.EXCESSPOWER_UNIT_SCALE['Hz']):
    """
	Create a bank of sngl_burst XML entries. This file is then used by the trigger generator to do trigger generation. Takes in the frequency parameters and filter duration and returns an ligolw entity with a sngl_burst Table which can be saved to a file.
	"""

    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    bank = lsctables.New(lsctables.SnglBurstTable, [
        "peak_time_ns", "start_time_ns", "stop_time_ns", "process_id", "ifo",
        "peak_time", "start_time", "stop_time", "duration", "time_lag",
        "peak_frequency", "search", "central_freq", "channel", "amplitude",
        "snr", "confidence", "chisq", "chisq_dof", "flow", "fhigh",
        "bandwidth", "tfvolume", "hrss", "event_id"
    ])
    bank.sync_next_id()

    # The first frequency band actually begins at flow, so we offset the
    # central frequency accordingly
    if level == 0:  # Hann windows
        edge = band / 2
        cfreq = flow + band
    else:  # Tukey windows
        edge = band / 2**(level + 1)
        # The sin^2 tapering comes from the Hann windows, so we need to know
        # how far they extend to account for the overlap at the ends
        cfreq = flow + edge + (band / 2)

    while cfreq + edge + band / 2 <= fhigh:
        row = bank.RowType()
        row.search = u"gstlal_excesspower"
        row.duration = duration * ndof
        row.bandwidth = band
        row.peak_frequency = cfreq
        row.central_freq = cfreq
        # This actually marks the 50 % overlap point
        row.flow = cfreq - band / 2.0
        # This actually marks the 50 % overlap point
        row.fhigh = cfreq + band / 2.0
        row.ifo = detector
        row.chisq_dof = 2 * band * row.duration
        row.duration *= units

        # Stuff that doesn't matter, yet
        row.peak_time_ns = 0
        row.peak_time = 0
        row.start_time_ns = 0
        row.start_time = 0
        row.stop_time_ns = 0
        row.stop_time = 0
        row.tfvolume = 0
        row.time_lag = 0
        row.amplitude = 0
        row.hrss = 0
        row.snr = 0
        row.chisq = 0
        row.confidence = 0
        row.event_id = bank.get_next_id()
        row.channel = "awesome full of GW channel"
        row.process_id = ilwd.ilwdchar(u"process:process_id:0")

        bank.append(row)
        #cfreq += band #band is half the full width of the window, so this is 50% overlap
        cfreq += band * (1 - frequency_overlap)

    xmldoc.childNodes[0].appendChild(bank)
    return xmldoc
Exemplo n.º 19
0
def write_bank(filename,
               banks,
               psd_input,
               cliplefts=None,
               cliprights=None,
               verbose=False):
    """Write SVD banks to a LIGO_LW xml file."""

    # Create new document
    xmldoc = ligolw.Document()
    lw = xmldoc.appendChild(ligolw.LIGO_LW())

    for bank, clipleft, clipright in zip(banks, cliplefts, cliprights):
        # set up root for this sub bank
        root = lw.appendChild(
            ligolw.LIGO_LW(Attributes({u"Name": u"gstlal_svd_bank_Bank"})))

        # FIXME FIXME FIXME move this clipping stuff to the Bank class
        # set the right clipping index
        clipright = len(bank.sngl_inspiral_table) - clipright

        # Apply clipping option to sngl inspiral table
        # put the bank table into the output document
        new_sngl_table = bank.sngl_inspiral_table.copy()
        for row in bank.sngl_inspiral_table[clipleft:clipright]:
            # FIXME need a proper id column
            row.Gamma1 = int(bank.bank_id.split("_")[0])
            new_sngl_table.append(row)

        # put the possibly clipped table into the file
        root.appendChild(new_sngl_table)

        # Add root-level scalar params
        root.appendChild(
            ligolw_param.Param.from_pyvalue('filter_length',
                                            bank.filter_length))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('gate_threshold',
                                            bank.gate_threshold))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('logname', bank.logname or ""))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('snr_threshold',
                                            bank.snr_threshold))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('template_bank_filename',
                                            bank.template_bank_filename))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('bank_id', bank.bank_id))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('new_deltaf', bank.newdeltaF))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('working_f_low',
                                            bank.working_f_low))
        root.appendChild(ligolw_param.Param.from_pyvalue('f_low', bank.f_low))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('sample_rate_max',
                                            int(bank.sample_rate_max)))
        root.appendChild(
            ligolw_param.Param.from_pyvalue('gstlal_fir_whiten',
                                            os.environ['GSTLAL_FIR_WHITEN']))

        # apply clipping to autocorrelations and sigmasq
        bank.autocorrelation_bank = bank.autocorrelation_bank[
            clipleft:clipright, :]
        bank.autocorrelation_mask = bank.autocorrelation_mask[
            clipleft:clipright, :]
        bank.sigmasq = bank.sigmasq[clipleft:clipright]

        # Add root-level arrays
        # FIXME:  ligolw format now supports complex-valued data
        root.appendChild(
            ligolw_array.Array.build('autocorrelation_bank_real',
                                     bank.autocorrelation_bank.real))
        root.appendChild(
            ligolw_array.Array.build('autocorrelation_bank_imag',
                                     bank.autocorrelation_bank.imag))
        root.appendChild(
            ligolw_array.Array.build('autocorrelation_mask',
                                     bank.autocorrelation_mask))
        root.appendChild(
            ligolw_array.Array.build('sigmasq', numpy.array(bank.sigmasq)))

        # Write bank fragments
        for i, frag in enumerate(bank.bank_fragments):
            # Start new bank fragment container
            el = root.appendChild(ligolw.LIGO_LW())

            # Apply clipping option
            if frag.mix_matrix is not None:
                frag.mix_matrix = frag.mix_matrix[:,
                                                  clipleft * 2:clipright * 2]
            frag.chifacs = frag.chifacs[clipleft * 2:clipright * 2]

            # Add scalar params
            el.appendChild(
                ligolw_param.Param.from_pyvalue('rate', int(frag.rate)))
            el.appendChild(ligolw_param.Param.from_pyvalue(
                'start', frag.start))
            el.appendChild(ligolw_param.Param.from_pyvalue('end', frag.end))

            # Add arrays
            el.appendChild(ligolw_array.Array.build('chifacs', frag.chifacs))
            if frag.mix_matrix is not None:
                el.appendChild(
                    ligolw_array.Array.build('mix_matrix', frag.mix_matrix))
            el.appendChild(
                ligolw_array.Array.build('orthogonal_template_bank',
                                         frag.orthogonal_template_bank))
            if frag.singular_values is not None:
                el.appendChild(
                    ligolw_array.Array.build('singular_values',
                                             frag.singular_values))
            if frag.sum_of_squares_weights is not None:
                el.appendChild(
                    ligolw_array.Array.build('sum_of_squares_weights',
                                             frag.sum_of_squares_weights))

    # put a copy of the processed PSD file in
    # FIXME in principle this could be different for each bank included in
    # this file, but we only put one here
    psd = psd_input[bank.sngl_inspiral_table[0].ifo]
    lal.series.make_psd_xmldoc({bank.sngl_inspiral_table[0].ifo: psd}, lw)

    # Write to file
    ligolw_utils.write_filename(xmldoc,
                                filename,
                                gz=filename.endswith('.gz'),
                                verbose=verbose)
Exemplo n.º 20
0
def write_simplified_sngl_inspiral_table(m1,
                                         m2,
                                         s1x,
                                         s1y,
                                         s1z,
                                         s2x,
                                         s2y,
                                         s2z,
                                         instrument,
                                         approximant,
                                         filename=None):
    """Writing a simplified sngl_inspiral_table containing only one template.

	Args:
		m1 (float): mass1.
		m2 (float): mass2.
		s1x (float): spin 1 x-axis.
		s1y (float): spin 1 y-axis.
		s1z (float): spin 1 z-axis.
		s2x (float): spin 2 x-axis.
		s2y (float): spin 2 y-axis.
		s2z (float): spin 2 z-axis.
		instrument (str): The instrument for the template.
		approximant (str): The approximant used to simulate the waveform.
		filename (str, default=None): The output filename.

	Return:
		The file object representing the xmldoc.

	"""
    # Check if it is valid approximant
    templates.gstlal_valid_approximant(approximant)

    xmldoc = ligolw.Document()
    root = xmldoc.appendChild(ligolw.LIGO_LW())

    table = lsctables.New(lsctables.SnglInspiralTable)
    rows = table.RowType()

    # set all slots to impossible/dummy value
    for t, c in zip(table.columntypes, table.columnnames):
        if t == u"real_4" or t == u"real_8":
            rows.__setattr__(c, 0)
        elif t == u"int_4s" or t == u"int_8s":
            rows.__setattr__(c, 0)
        elif t == u"lstring":
            rows.__setattr__(c, "")
        else:
            rows.__setattr__(c, None)

    rows.mass1 = m1
    rows.mass2 = m2
    rows.mtotal = m1 + m2
    rows.mchirp = (m1 * m2)**0.6 / (m1 + m2)**0.2
    rows.spin1x = s1x
    rows.spin1y = s1y
    rows.spin1z = s1z
    rows.spin2x = s2x
    rows.spin2y = s2y
    rows.spin2z = s2z
    rows.ifo = instrument

    table.append(rows)
    root.appendChild(table)

    #FIXME: do something better than this
    root.appendChild(
        ligolw_param.Param.from_pyvalue("approximant", approximant))

    if filename is not None:
        ligolw_utils.write_filename(xmldoc,
                                    filename,
                                    gz=filename.endswith("gz"))

    return xmldoc
Exemplo n.º 21
0
 def to_xml(self, name):
     xml = ligolw.LIGO_LW({u"Name": u"%s:triggerrates" % name})
     for key, value in self.items():
         xml.appendChild(value.to_xml(key))
     return xml
Exemplo n.º 22
0
def make_exttrig_file(cp, ifos, sci_seg, out_dir):
    '''
    Make an ExtTrig xml file containing information on the external trigger

    Parameters
    ----------
    cp : pycbc.workflow.configuration.WorkflowConfigParser object
    The parsed configuration options of a pycbc.workflow.core.Workflow.

    ifos : str
    String containing the analysis interferometer IDs.

    sci_seg : ligo.segments.segment
    The science segment for the analysis run.

    out_dir : str
    The output directory, destination for xml file.

    Returns
    -------
    xml_file : pycbc.workflow.File object
    The xml file with external trigger information.

    '''
    # Initialise objects
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    tbl = lsctables.New(lsctables.ExtTriggersTable)
    cols = tbl.validcolumns
    xmldoc.childNodes[-1].appendChild(tbl)
    row = tbl.appendRow()

    # Add known attributes for this GRB
    setattr(row, "event_ra", float(cp.get("workflow", "ra")))
    setattr(row, "event_dec", float(cp.get("workflow", "dec")))
    setattr(row, "start_time", int(cp.get("workflow", "trigger-time")))
    setattr(row, "event_number_grb", str(cp.get("workflow", "trigger-name")))

    # Fill in all empty rows
    for entry in cols.keys():
        if hasattr(row, entry):
            continue
        if cols[entry] in ['real_4', 'real_8']:
            setattr(row, entry, 0.)
        elif cols[entry] in ['int_4s', 'int_8s']:
            setattr(row, entry, 0)
        elif cols[entry] == 'lstring':
            setattr(row, entry, '')
        elif entry == 'process_id':
            row.process_id = 0
        elif entry == 'event_id':
            row.event_id = 0
        else:
            raise ValueError("Column %s not recognized" % entry)

    # Save file
    xml_file_name = "triggerGRB%s.xml" % str(cp.get("workflow",
                                                    "trigger-name"))
    xml_file_path = os.path.join(out_dir, xml_file_name)
    utils.write_filename(xmldoc, xml_file_path)
    xml_file_url = urljoin("file:", pathname2url(xml_file_path))
    xml_file = File(ifos, xml_file_name, sci_seg, file_url=xml_file_url)
    xml_file.add_pfn(xml_file_url, site="local")

    return xml_file
Exemplo n.º 23
0
    def __init__(self, ifos, coinc_results, **kwargs):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos participating in this trigger.
        coinc_results: dict of values
            A dictionary of values. The format is defined in
            pycbc/events/coinc.py and matches the on disk representation
            in the hdf file for this time.
        psds: dict of FrequencySeries
            Dictionary providing PSD estimates for all involved detectors.
        low_frequency_cutoff: float
            Minimum valid frequency for the PSD estimates.
        high_frequency_cutoff: float, optional
            Maximum frequency considered for the PSD estimates. Default None.
        followup_data: dict of dicts, optional
            Dictionary providing SNR time series for each detector,
            to be used in sky localization with BAYESTAR. The format should
            be `followup_data['H1']['snr_series']`. More detectors can be
            present than given in `ifos`. If so, the extra detectors will only
            be used for sky localization.
        channel_names: dict of strings, optional
            Strain channel names for each detector.
            Will be recorded in the sngl_inspiral table.
        mc_area_args: dict of dicts, optional
            Dictionary providing arguments to be used in source probability
            estimation with pycbc/mchirp_area.py
        """
        self.template_id = coinc_results['foreground/%s/template_id' % ifos[0]]
        self.coinc_results = coinc_results
        self.ifos = ifos

        # remember if this should be marked as HWINJ
        self.is_hardware_injection = ('HWINJ' in coinc_results
                                      and coinc_results['HWINJ'])

        # Check if we need to apply a time offset (this may be permerger)
        self.time_offset = 0
        rtoff = 'foreground/{}/time_offset'.format(ifos[0])
        if rtoff in coinc_results:
            self.time_offset = coinc_results[rtoff]

        if 'followup_data' in kwargs:
            fud = kwargs['followup_data']
            assert len({fud[ifo]['snr_series'].delta_t for ifo in fud}) == 1, \
                    "delta_t for all ifos do not match"
            self.snr_series = {ifo: fud[ifo]['snr_series'] for ifo in fud}
            usable_ifos = fud.keys()
            followup_ifos = list(set(usable_ifos) - set(ifos))

            for ifo in self.snr_series:
                self.snr_series[ifo].start_time += self.time_offset
        else:
            self.snr_series = None
            usable_ifos = ifos
            followup_ifos = []

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        # FIXME is it safe (in terms of downstream operations) to let
        # `program_name` default to the actual script name?
        proc_id = create_process_table(outdoc,
                                       program_name='pycbc',
                                       detectors=usable_ifos).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(usable_ifos)
        coinc_event_row.instruments = ','.join(usable_ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_populated = None
        network_snrsq = 0
        for sngl_id, ifo in enumerate(usable_ifos):
            sngl = return_empty_sngl(nones=True)
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl.process_id = proc_id
            sngl.ifo = ifo
            names = [
                n.split('/')[-1] for n in coinc_results
                if 'foreground/%s' % ifo in n
            ]
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    val += self.time_offset
                    sngl.end = lal.LIGOTimeGPS(val)
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            if sngl.mass1 and sngl.mass2:
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                    sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                    sngl.mass1, sngl.mass2)
                sngl_populated = sngl
            if sngl.snr:
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                network_snrsq += sngl.snr**2.0
            if 'channel_names' in kwargs and ifo in kwargs['channel_names']:
                sngl.channel = kwargs['channel_names'][ifo]
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

            if self.snr_series is not None:
                snr_series_to_xml(self.snr_series[ifo], outdoc, sngl.event_id)

        # set merger time to the average of the ifo peaks
        self.merger_time = numpy.mean([
            coinc_results['foreground/{}/end_time'.format(ifo)] for ifo in ifos
        ]) + self.time_offset

        # for subthreshold detectors, respect BAYESTAR's assumptions and checks
        bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x '
                                 'spin1y spin1z spin2x spin2y spin2z').split()
        for sngl in sngl_inspiral_table:
            if sngl.ifo in followup_ifos:
                for bcf in bayestar_check_fields:
                    setattr(sngl, bcf, getattr(sngl_populated, bcf))
                sngl.end = lal.LIGOTimeGPS(self.merger_time)

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.instruments = tuple(usable_ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl_populated.mchirp
        coinc_inspiral_row.mass = sngl_populated.mtotal
        coinc_inspiral_row.end_time = sngl_populated.end_time
        coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns
        coinc_inspiral_row.snr = network_snrsq**0.5
        far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)

        # append the PSDs
        self.psds = kwargs['psds']
        psds_lal = {}
        for ifo in self.psds:
            psd = self.psds[ifo]
            kmin = int(kwargs['low_frequency_cutoff'] / psd.delta_f)
            fseries = lal.CreateREAL8FrequencySeries(
                "psd", psd.epoch, kwargs['low_frequency_cutoff'], psd.delta_f,
                lal.StrainUnit**2 / lal.HertzUnit,
                len(psd) - kmin)
            fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC**2.0
            psds_lal[ifo] = fseries
        make_psd_xmldoc(psds_lal, outdoc)

        # source probabilities estimation
        if 'mc_area_args' in kwargs:
            eff_distances = [sngl.eff_distance for sngl in sngl_inspiral_table]
            probabilities = calc_probabilities(coinc_inspiral_row.mchirp,
                                               coinc_inspiral_row.snr,
                                               min(eff_distances),
                                               kwargs['mc_area_args'])
            self.probabilities = probabilities
        else:
            self.probabilities = None

        self.outdoc = outdoc
        self.time = sngl_populated.end
Exemplo n.º 24
0
def output_sngl_inspiral_table(outputFile, tempBank, metricParams,
                               ethincaParams, programName="", optDict = None,
                               outdoc=None):
    """
    Function that converts the information produced by the various PyCBC bank
    generation codes into a valid LIGOLW XML file containing a sngl_inspiral
    table and outputs to file.

    Parameters
    -----------
    outputFile : string
        Name of the file that the bank will be written to
    tempBank : iterable
        Each entry in the tempBank iterable should be a sequence of
        [mass1,mass2,spin1z,spin2z] in that order.
    metricParams : metricParameters instance
        Structure holding all the options for construction of the metric
        and the eigenvalues, eigenvectors and covariance matrix
        needed to manipulate the space.
    ethincaParams: {ethincaParameters instance, None}
        Structure holding options relevant to the ethinca metric computation
        including the upper frequency cutoff to be used for filtering.
        NOTE: The computation is currently only valid for non-spinning systems
        and uses the TaylorF2 approximant.
    programName (key-word-argument) : string
        Name of the executable that has been run
    optDict (key-word argument) : dictionary
        Dictionary of the command line arguments passed to the program
    outdoc (key-word argument) : ligolw xml document
        If given add template bank to this representation of a xml document and
        write to disk. If not given create a new document.
    """
    if optDict is None:
        optDict = {}
    if outdoc is None:
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

    # get IFO to put in search summary table
    ifos = []
    if 'channel_name' in optDict.keys():
        if optDict['channel_name'] is not None:
            ifos = [optDict['channel_name'][0:2]]

    proc = create_process_table(
        outdoc,
        program_name=programName,
        detectors=ifos,
        options=optDict
    )
    proc_id = proc.process_id
    sngl_inspiral_table = convert_to_sngl_inspiral_table(tempBank, proc_id)
    # Calculate Gamma components if needed
    if ethincaParams is not None:
        if ethincaParams.doEthinca:
            for sngl in sngl_inspiral_table:
                # Set tau_0 and tau_3 values needed for the calculation of
                # ethinca metric distances
                (sngl.tau0,sngl.tau3) = pnutils.mass1_mass2_to_tau0_tau3(
                    sngl.mass1, sngl.mass2, metricParams.f0)
                fMax_theor, GammaVals = calculate_ethinca_metric_comps(
                    metricParams, ethincaParams,
                    sngl.mass1, sngl.mass2, spin1z=sngl.spin1z,
                    spin2z=sngl.spin2z, full_ethinca=ethincaParams.full_ethinca)
                # assign the upper frequency cutoff and Gamma0-5 values
                sngl.f_final = fMax_theor
                for i in range(len(GammaVals)):
                    setattr(sngl, "Gamma"+str(i), GammaVals[i])
        # If Gamma metric components are not wanted, assign f_final from an
        # upper frequency cutoff specified in ethincaParams
        elif ethincaParams.cutoff is not None:
            for sngl in sngl_inspiral_table:
                sngl.f_final = pnutils.frequency_cutoff_from_name(
                    ethincaParams.cutoff,
                    sngl.mass1, sngl.mass2, sngl.spin1z, sngl.spin2z)

    # set per-template low-frequency cutoff
    if 'f_low_column' in optDict and 'f_low' in optDict and \
            optDict['f_low_column'] is not None:
        for sngl in sngl_inspiral_table:
            setattr(sngl, optDict['f_low_column'], optDict['f_low'])

    outdoc.childNodes[0].appendChild(sngl_inspiral_table)

    # get times to put in search summary table
    start_time = 0
    end_time = 0
    if 'gps_start_time' in optDict.keys() and 'gps_end_time' in optDict.keys():
        start_time = optDict['gps_start_time']
        end_time = optDict['gps_end_time']

    # make search summary table
    search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
    search_summary = return_search_summary(
        start_time, end_time, len(sngl_inspiral_table), ifos
    )
    search_summary_table.append(search_summary)
    outdoc.childNodes[0].appendChild(search_summary_table)

    # write the xml doc to disk
    ligolw_utils.write_filename(outdoc, outputFile)
Exemplo n.º 25
0
    injections['latitude'] = samples['latitude']
    injections['inclination'] = inclination
    injections['coa_phase'] = samples['phi_orb']
    injections['polarization'] = samples['polarization']
    injections['spin1x'] = s1x
    injections['spin1y'] = s1y
    injections['spin1z'] = s1z
    injections['spin2x'] = s2x
    injections['spin2y'] = s2y
    injections['spin2z'] = s2z
    injections['amp_order'] = [opts.amporder for i in range(N)]
    injections['numrel_data'] = ["" for _ in range(N)]

    # Create a new XML document
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    proc = ligo.lw.utils.process.register_to_xmldoc(doc, sys.argv[0], {})
    sim_table = lsctables.New(lsctables.SimInspiralTable)
    xmldoc.childNodes[0].appendChild(sim_table)

    # Add empty rows to the sim_inspiral table
    for inj in range(N):
        row = sim_table.RowType()
        for slot in row.__slots__:
            setattr(row, slot, 0)
        sim_table.append(row)

    # Fill in IDs
    for i, row in enumerate(sim_table):
        row.process_id = proc.process_id
        row.simulation_id = sim_table.get_next_id()
Exemplo n.º 26
0
def main(args=None):
    p = parser()
    opts = p.parse_args(args)

    # LIGO-LW XML imports.
    from ligo.lw import ligolw
    from ligo.lw.param import Param
    from ligo.lw.utils.search_summary import append_search_summary
    from ligo.lw import utils as ligolw_utils
    from ligo.lw.lsctables import (
        New, CoincDefTable, CoincID, CoincInspiralTable, CoincMapTable,
        CoincTable, ProcessParamsTable, ProcessTable, SimInspiralTable,
        SnglInspiralTable, TimeSlideTable)

    # glue, LAL and pylal imports.
    from ligo import segments
    import lal
    import lal.series
    import lalsimulation
    from lalinspiral.inspinjfind import InspiralSCExactCoincDef
    from lalinspiral.thinca import InspiralCoincDef
    from tqdm import tqdm

    # BAYESTAR imports.
    from ..io.events.ligolw import ContentHandler
    from ..bayestar import filter
    from ..util.progress import progress_map

    # Read PSDs.
    xmldoc = ligolw_utils.load_fileobj(
        opts.reference_psd, contenthandler=lal.series.PSDContentHandler)
    psds = lal.series.read_psd_xmldoc(xmldoc, root_name=None)
    psds = {
        key: filter.InterpolatedPSD(filter.abscissa(psd), psd.data.data)
        for key, psd in psds.items() if psd is not None}
    psds = [psds[ifo] for ifo in opts.detector]

    # Extract simulation table from injection file.
    inj_xmldoc = ligolw_utils.load_fileobj(
        opts.input, contenthandler=ContentHandler)
    orig_sim_inspiral_table = SimInspiralTable.get_table(inj_xmldoc)

    # Prune injections that are outside distance limits.
    orig_sim_inspiral_table[:] = [
        row for row in orig_sim_inspiral_table
        if opts.min_distance <= row.distance <= opts.max_distance]

    # Open output file.
    xmldoc = ligolw.Document()
    xmlroot = xmldoc.appendChild(ligolw.LIGO_LW())

    # Create tables. Process and ProcessParams tables are copied from the
    # injection file.
    coinc_def_table = xmlroot.appendChild(New(CoincDefTable))
    coinc_inspiral_table = xmlroot.appendChild(New(CoincInspiralTable))
    coinc_map_table = xmlroot.appendChild(New(CoincMapTable))
    coinc_table = xmlroot.appendChild(New(CoincTable))
    xmlroot.appendChild(ProcessParamsTable.get_table(inj_xmldoc))
    xmlroot.appendChild(ProcessTable.get_table(inj_xmldoc))
    sim_inspiral_table = xmlroot.appendChild(New(SimInspiralTable))
    sngl_inspiral_table = xmlroot.appendChild(New(SnglInspiralTable))
    time_slide_table = xmlroot.appendChild(New(TimeSlideTable))

    # Write process metadata to output file.
    process = register_to_xmldoc(
        xmldoc, p, opts, instruments=opts.detector,
        comment="Simulated coincidences")

    # Add search summary to output file.
    all_time = segments.segment([lal.LIGOTimeGPS(0), lal.LIGOTimeGPS(2e9)])
    append_search_summary(xmldoc, process, inseg=all_time, outseg=all_time)

    # Create a time slide entry.  Needed for coinc_event rows.
    time_slide_id = time_slide_table.get_time_slide_id(
        {ifo: 0 for ifo in opts.detector}, create_new=process)

    # Populate CoincDef table.
    inspiral_coinc_def = copy.copy(InspiralCoincDef)
    inspiral_coinc_def.coinc_def_id = coinc_def_table.get_next_id()
    coinc_def_table.append(inspiral_coinc_def)
    found_coinc_def = copy.copy(InspiralSCExactCoincDef)
    found_coinc_def.coinc_def_id = coinc_def_table.get_next_id()
    coinc_def_table.append(found_coinc_def)

    # Precompute values that are common to all simulations.
    detectors = [lalsimulation.DetectorPrefixToLALDetector(ifo)
                 for ifo in opts.detector]
    responses = [det.response for det in detectors]
    locations = [det.location for det in detectors]

    if opts.jobs != 1:
        from .. import omp
        omp.num_threads = 1  # disable OpenMP parallelism

    func = functools.partial(simulate, psds=psds,
                             responses=responses, locations=locations,
                             measurement_error=opts.measurement_error,
                             f_low=opts.f_low, f_high=opts.f_high,
                             waveform=opts.waveform)

    # Make sure that each thread gets a different random number state.
    # We start by drawing a random integer s in the main thread, and
    # then the i'th subprocess will seed itself with the integer i + s.
    #
    # The seed must be an unsigned 32-bit integer, so if there are n
    # threads, then s must be drawn from the interval [0, 2**32 - n).
    #
    # Note that *we* are thread 0, so there are a total of
    # n=1+len(sim_inspiral_table) threads.
    seed = np.random.randint(0, 2 ** 32 - len(sim_inspiral_table) - 1)
    np.random.seed(seed)

    with tqdm(desc='accepted') as progress:
        for sim_inspiral, simulation in zip(
                orig_sim_inspiral_table,
                progress_map(
                    func,
                    np.arange(len(orig_sim_inspiral_table)) + seed + 1,
                    orig_sim_inspiral_table, jobs=opts.jobs)):

            sngl_inspirals = []
            used_snr_series = []
            net_snr = 0.0
            count_triggers = 0

            # Loop over individual detectors and create SnglInspiral entries.
            for ifo, (horizon, abs_snr, arg_snr, toa, series) \
                    in zip(opts.detector, simulation):

                if np.random.uniform() > opts.duty_cycle:
                    continue
                elif abs_snr >= opts.snr_threshold:
                    # If SNR < threshold, then the injection is not found.
                    # Skip it.
                    count_triggers += 1
                    net_snr += np.square(abs_snr)
                elif not opts.keep_subthreshold:
                    continue

                # Create SnglInspiral entry.
                used_snr_series.append(series)
                sngl_inspirals.append(
                    sngl_inspiral_table.RowType(**dict(
                        dict.fromkeys(sngl_inspiral_table.validcolumns, None),
                        process_id=process.process_id,
                        ifo=ifo,
                        mass1=sim_inspiral.mass1,
                        mass2=sim_inspiral.mass2,
                        spin1x=sim_inspiral.spin1x,
                        spin1y=sim_inspiral.spin1y,
                        spin1z=sim_inspiral.spin1z,
                        spin2x=sim_inspiral.spin2x,
                        spin2y=sim_inspiral.spin2y,
                        spin2z=sim_inspiral.spin2z,
                        end=toa,
                        snr=abs_snr,
                        coa_phase=arg_snr,
                        f_final=opts.f_high,
                        eff_distance=horizon / abs_snr)))

            net_snr = np.sqrt(net_snr)

            # If too few triggers were found, then skip this event.
            if count_triggers < opts.min_triggers:
                continue

            # If network SNR < threshold, then the injection is not found.
            # Skip it.
            if net_snr < opts.net_snr_threshold:
                continue

            # Add Coinc table entry.
            coinc = coinc_table.appendRow(
                coinc_event_id=coinc_table.get_next_id(),
                process_id=process.process_id,
                coinc_def_id=inspiral_coinc_def.coinc_def_id,
                time_slide_id=time_slide_id,
                insts=opts.detector,
                nevents=len(opts.detector),
                likelihood=None)

            # Add CoincInspiral table entry.
            coinc_inspiral_table.appendRow(
                coinc_event_id=coinc.coinc_event_id,
                instruments=[
                    sngl_inspiral.ifo for sngl_inspiral in sngl_inspirals],
                end=lal.LIGOTimeGPS(1e-9 * np.mean([
                    sngl_inspiral.end.ns()
                    for sngl_inspiral in sngl_inspirals
                    if sngl_inspiral.end is not None])),
                mass=sim_inspiral.mass1 + sim_inspiral.mass2,
                mchirp=sim_inspiral.mchirp,
                combined_far=0.0,  # Not provided
                false_alarm_rate=0.0,  # Not provided
                minimum_duration=None,  # Not provided
                snr=net_snr)

            # Record all sngl_inspiral records and associate them with coincs.
            for sngl_inspiral, series in zip(sngl_inspirals, used_snr_series):
                # Give this sngl_inspiral record an id and add it to the table.
                sngl_inspiral.event_id = sngl_inspiral_table.get_next_id()
                sngl_inspiral_table.append(sngl_inspiral)

                if opts.enable_snr_series:
                    elem = lal.series.build_COMPLEX8TimeSeries(series)
                    elem.appendChild(
                        Param.from_pyvalue('event_id', sngl_inspiral.event_id))
                    xmlroot.appendChild(elem)

                # Add CoincMap entry.
                coinc_map_table.appendRow(
                    coinc_event_id=coinc.coinc_event_id,
                    table_name=sngl_inspiral_table.tableName,
                    event_id=sngl_inspiral.event_id)

            # Record injection
            if not opts.preserve_ids:
                sim_inspiral.simulation_id = sim_inspiral_table.get_next_id()
            sim_inspiral_table.append(sim_inspiral)

            progress.update()

    # Record coincidence associating injections with events.
    for i, sim_inspiral in enumerate(sim_inspiral_table):
        coinc = coinc_table.appendRow(
            coinc_event_id=coinc_table.get_next_id(),
            process_id=process.process_id,
            coinc_def_id=found_coinc_def.coinc_def_id,
            time_slide_id=time_slide_id,
            instruments=None,
            nevents=None,
            likelihood=None)
        coinc_map_table.appendRow(
            coinc_event_id=coinc.coinc_event_id,
            table_name=sim_inspiral_table.tableName,
            event_id=sim_inspiral.simulation_id)
        coinc_map_table.appendRow(
            coinc_event_id=coinc.coinc_event_id,
            table_name=coinc_table.tableName,
            event_id=CoincID(i))

    # Record process end time.
    process.set_end_time_now()

    # Write output file.
    write_fileobj(xmldoc, opts.output)