def plotall(name, strats, legend_loc): lines = [] maxX = 0.0 maxY = 0.0 for experiment_id in ids: problem_name = get.problem_name_of_experiment(experiment_id) #print problem_name (maxtime, bl_avg, norms) = ets(experiment_id, n_procs) for strat in strats: lab = pretty_bench_name(problem_name) ns = norms xys = [] for (input, pinput, avg, stddev) in ns: if is_ebsap(input): s = param_of_strategy(input) (k, v) = s.split(",") x = float(k) else: x = int(param_of_mls(input)) x = float(math.log(x, 2)) y = (bl_avg / avg) #print (lab, avg, y, bl_avg) xys.append((x, y)) maxX = max(x, maxX) maxY = max(y, maxY) xys.sort(cmp) lines.append((lab, xys)) yaxvals = np.arange(0, 49, 8) xaxlabs = [] for i in range(0, 15): xaxlabs.append(('$2^{' + str(i) + '}$')) line_plot.plot( 'mls' + name, lines, 14, 49.0, chart_title='', connect_dots=True, #formats=['r+', 'b+', 'r-', 'b-', 'rx', 'bx', 'r^', 'b^', 'ro', 'bo'], linecolors=[ '#000000', 'r', 'b', 'g', 'b', 'r', 'b', 'r', 'g', 'r', 'b', 'g', 'r', 'b' ], formats=['b+', 'b,', 'b.', 'b1', 'b2', 'b3', 'b4', 'b<', 'b>', 'b|'], dashes=[ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ], yax_label='speedup', xax_label='$M$', dimensions=(35, 23), legend_loc=legend_loc, marker=(43.0, 4.0), yaxvals=yaxvals, xaxlabs=xaxlabs)
def plotall(name, leaf_sizes, legend_loc): lines = [] maxX = 0.0 maxY = 0.0 for experiment_id in ids: problem_name = get.problem_name_of_experiment(experiment_id) #print problem_name (maxtime, bl_avg, mlt_avg, mltlbsovhd, lbs_ovhd, norms) = compare_wall_clock(experiment_id, n_procs) lab = problem_name ns = norms xys = [] print problem_name print ns print bl_avg print 'n_procs' print n_procs for (branch, input, pinput, avg, stddev, max_leaf_size) in ns: if max_leaf_size == 500: x = math.log(512, 2) else: x = math.log(max_leaf_size, 2) y = (bl_avg / avg) xys.append((x, y)) maxX = max(x, maxX) maxY = max(y, maxY) xys.sort(cmp) print xys lines.append((lab, xys)) yaxvals = np.arange(0, 49, 8) xaxlabs = [] for i in range(0, 13): xaxlabs.append(('$2^{' + str(i) + '}$')) line_plot.plot( name, lines, maxX, 48, chart_title='', connect_dots=True, #formats=['r+', 'b+', 'r-', 'b-', 'rx', 'bx', 'r^', 'b^', 'ro', 'bo'], formats=['b+', 'b,', 'b.', 'b1', 'b2', 'b3', 'b4', 'b<', 'b>', 'b|'], dashes=[ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ], yax_label='speedup', xax_label='leaf size', dimensions=(35, 23), legend_loc=legend_loc, yaxvals=yaxvals, xaxlabs=xaxlabs, marker=(43.0, 4.0))
def plotall(name, strats, legend_loc): lines = [] maxX = 0.0 maxY = 0.0 for experiment_id in ids: problem_name = get.problem_name_of_experiment(experiment_id) #print problem_name (maxtime, bl_avg, mlt_avg, mltlbsovhd, lbs_ovhd, norms) = compare_wall_clock(experiment_id, n_procs) for strat in strats: lab = problem_name ns = [n for n in norms if id_of_strategy(n[0]) == strat[0]] xys = [] for (input, pinput, avg, stddev) in ns: if is_ebsap(input): s = param_of_strategy(input) (k, v) = s.split(",") x = float(k) else: x = int(param_of_strategy(input)) x = float(math.log(x, 2)) # x=x-4.0 y = ((bl_avg / avg) / float(n_procs)) * 100.0 #print (lab, avg, y, bl_avg) xys.append((x, y)) maxX = max(x, maxX) maxY = max(y, maxY) xys.sort(cmp) lines.append((lab, xys)) line_plot.plot( 'tps' + name, lines, maxX, 102.0, chart_title='', connect_dots=True, #formats=['r+', 'b+', 'r-', 'b-', 'rx', 'bx', 'r^', 'b^', 'ro', 'bo'], linecolors=[ '#000000', 'r', 'b', 'g', 'b', 'r', 'b', 'r', 'g', 'r', 'b', 'g', 'r', 'b' ], formats=['b+', 'b,', 'b.', 'b1', 'b2', 'b3', 'b4', 'b<', 'b>', 'b|'], dashes=[ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ], yax_label='parallel efficiency', xax_label='SST (log scale)', dimensions=(35, 23), legend_loc=legend_loc, marker=(43.0, 4.0))
def plotall(name, leaf_sizes, legend_loc): lines = [] maxX = 0.0 maxY = 0.0 for experiment_id in ids: problem_name = get.problem_name_of_experiment(experiment_id) #print problem_name (maxtime, bl_avg, mlt_avg, mltlbsovhd, lbs_ovhd, norms) = compare_wall_clock(experiment_id, n_procs) lab = problem_name ns = [n for n in norms if id_of_strategy(n[1]) == "lbs"] xys = [] print problem_name print ns print bl_avg for (branch, input, pinput, avg, stddev, max_leaf_size) in ns: if max_leaf_size == 500: x = math.log(512, 2) else: x = math.log(max_leaf_size, 2) y = ((bl_avg / avg) / float(n_procs)) * 100.0 xys.append((x, y)) maxX = max(x, maxX) maxY = max(y, maxY) xys.sort(cmp) print xys lines.append((lab, xys)) line_plot.plot( name, lines, maxX, 150.0, chart_title='', connect_dots=True, #formats=['r+', 'b+', 'r-', 'b-', 'rx', 'bx', 'r^', 'b^', 'ro', 'bo'], formats=['b+', 'b,', 'b.', 'b1', 'b2', 'b3', 'b4', 'b<', 'b>', 'b|'], dashes=[ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ], yax_label='parallel efficiency', xax_label='Max leaf size (log_2 scale)', dimensions=(35, 23), legend_loc=legend_loc, marker=(43.0, 4.0))