Exemplo n.º 1
0
 def dataPredictions(X_train, X_test, y_train, y_test):
     print("training and testing machine learning model")
     print("Shape of training_set -  X_train: " + str(X_train.shape) +
           ", y_train: " + str(y_train.shape))
     print("Shape of testing_set - X_test: " + str(X_test.shape) +
           ", y_test: " + str(y_test.shape))
     print("\nLinear regression model ")
     print(
         "Training without longitude and latitude (no polynomial features) and predicting median_house_value"
     )
     theta_std, X_train, cost_std = lr.batch_regressionModel(
         400, X_train[:, 2:], y_train[:, :], 0.01)
     print("Testing with the Training set")
     print("Test Values:")
     print(X_test[:5, :])
     print("Comparing the Results (Original - Prediction)")
     print(X_test.shape[1])
     test_one = np.ones((X_test.shape[0], X_test.shape[1] - 1))
     test_one[:, 1:] = X_test[:, 2:]
     print(
         str(y_test[:5, :]) + " <===> " +
         str(lr.hypothesis(theta_std, test_one[:5, :])))
     fig1, axs1 = plt.subplots(1, 1)
     fig1.canvas.set_window_title('CaliforniaHousingDataPredictions')
     fig1.suptitle("CaliforniaHousing Dataset - prediction cost")
     axs1.plot(cost_std)
Exemplo n.º 2
0
 def testRegNormalEquations():
     df = pd.read_csv("testData/ex1data2.txt", delimiter=',', header=None)
     X = df.values
     theta, X = lr.regularized_normalEquation(X[:, :2], X[:, 2:3], 1)
     print("<-------------------->")
     print("Testing Regularized Normal Equations on Dataset 1.2")
     print("<-------------------->")
     print("Theta:")
     print(theta)
     print("<-------------------->")
     print(
         "Estimate the price of a 1650 sq-ft, 3 br house using normal equations"
     )
     estimate = np.matrix([1, 1650, 3])
     print("Predicted price of a 1650 sq-ft, 3 br house " +
           str(lr.hypothesis(theta, estimate)))
     print("<-------------------->")
     print()
Exemplo n.º 3
0
 def testRegularizedLinearRegression():
     print("\n\n Testing Regularized Linear Regression:")
     df = pd.read_csv("testData/ex1data2.txt", delimiter=',', header=None)
     X_clean = df.copy().values
     df, mu, sigma = featureScaling(df)
     X = df.values
     y = X[:, 2:3]
     theta, X, cost = lr.regularized_linearRegression(
         400, 0.01, 1, X[:, :2], X[:, 2:3])
     print("<-------------------->")
     print("Reg. linear Regression using Dataset 1.2 and lambda = 1")
     print(
         "Estimate the price of a 1650 sq-ft, 3 br house using gradient descent"
     )
     estimate = np.matrix(
         [1, (1650 - mu[0]) / sigma[0], (3 - mu[1]) / sigma[1]])
     print("Predicted price of a 1650 sq-ft, 3 br house " + str(
         removeFeatureScaling(lr.hypothesis(theta, estimate), mu[2],
                              sigma[2])))
     print("")
Exemplo n.º 4
0
 def testNormalEquations():
     df = pd.read_csv("testData/ex1data2.txt", delimiter=',', header=None)
     X = df.values
     theta, cost = lr.normalEquations_regressionModel(X[:, :2], X[:, 2:3])
     print("<-------------------->")
     print("Testing Normal Equations on Dataset 1.2")
     print("<-------------------->")
     print("Theta:")
     print(theta)
     print("<-------------------->")
     print("Cost:")
     print(float(cost[0]))
     print("<-------------------->")
     print(
         "Estimate the price of a 1650 sq-ft, 3 br house using normal equations"
     )
     estimate = np.matrix([1, 1650, 3])
     print("Predicted price of a 1650 sq-ft, 3 br house " +
           str(lr.hypothesis(theta, estimate)))
     print("<-------------------->")
     print()
Exemplo n.º 5
0
 def testLinearRegression():
     print("\n\n Testing Linear Regression:")
     df = pd.read_csv("testData/ex1data2.txt", delimiter=',', header=None)
     X_clean = df.copy().values
     print(df.head())
     print(df.describe())
     df, mu, sigma = featureScaling(df)
     X = df.values
     y = X[:, 2:3]
     theta, X, cost = lr.batch_regressionModel(400, X[:, :2], X[:, 2:3],
                                               0.01)
     plotLinearRegression(
         X_clean, theta, cost,
         removeFeatureScaling(np.min(lr.hypothesis(theta, X)), mu[2],
                              sigma[2]),
         removeFeatureScaling(np.max(lr.hypothesis(theta, X)), mu[2],
                              sigma[2]),
         removeFeatureScaling(np.min(X[:, 1]), mu[0], sigma[0]),
         removeFeatureScaling(np.max(X[:, 1]), mu[0], sigma[0]))
     print("<-------------------->")
     print("Final theta")
     print(theta)
     print("<-------------------->")
     print("Testing for training Example 7,8,9,10")
     print(
         str(X[6, 0]) + " | " +
         str(removeFeatureScaling(X[6, 1], mu[0], sigma[0])) + " | " +
         str(removeFeatureScaling(X[6, 2], mu[1], sigma[1])))
     print(
         str(X[7, 0]) + " | " +
         str(removeFeatureScaling(X[7, 1], mu[0], sigma[0])) + " | " +
         str(removeFeatureScaling(X[7, 2], mu[1], sigma[1])))
     print(
         str(X[8, 0]) + " | " +
         str(removeFeatureScaling(X[8, 1], mu[0], sigma[0])) + " | " +
         str(removeFeatureScaling(X[8, 2], mu[1], sigma[1])))
     print(
         str(X[9, 0]) + " | " +
         str(removeFeatureScaling(X[9, 1], mu[0], sigma[0])) + " | " +
         str(removeFeatureScaling(X[9, 2], mu[1], sigma[1])))
     print("theta*the Training Examples")
     solution_seven = lr.hypothesis(theta, X[6, 0:3])
     solution_eight = lr.hypothesis(theta, X[7, 0:3])
     solution_nine = lr.hypothesis(theta, X[8, 0:3])
     solution_ten = lr.hypothesis(theta, X[9, 0:3])
     print("Remove feature Scaling")
     print("<> " + str(removeFeatureScaling(y[6], mu[2], sigma[2])) +
           " - " +
           str(removeFeatureScaling(solution_seven, mu[2], sigma[2])) +
           " <>")
     print("<> " + str(removeFeatureScaling(y[7], mu[2], sigma[2])) +
           " - " +
           str(removeFeatureScaling(solution_eight, mu[2], sigma[2])) +
           " <>")
     print("<> " + str(removeFeatureScaling(y[8], mu[2], sigma[2])) +
           " - " +
           str(removeFeatureScaling(solution_nine, mu[2], sigma[2])) +
           " <>")
     print("<> " + str(removeFeatureScaling(y[9], mu[2], sigma[2])) +
           " - " +
           str(removeFeatureScaling(solution_ten, mu[2], sigma[2])) + " <>")
     print("<-------------------->")
     print(
         "Estimate the price of a 1650 sq-ft, 3 br house using gradient descent"
     )
     estimate = np.matrix(
         [1, (1650 - mu[0]) / sigma[0], (3 - mu[1]) / sigma[1]])
     print("Predicted price of a 1650 sq-ft, 3 br house " + str(
         removeFeatureScaling(lr.hypothesis(theta, estimate), mu[2],
                              sigma[2])))
     print("<-------------------->")
     print("Plotting cost")