Exemplo n.º 1
0
def p_literal(p):
    '''literal : NEGATION LPAREN atom RPAREN
               | NEGATION atom
               | atom'''
    if len(p) == 5:
        p[0] = Literal.negative(p[3])
    elif len(p) == 3:
        p[0] = Literal.negative(p[2])
    else:
        p[0] = Literal.positive(p[1])
Exemplo n.º 2
0
 def setUp(cls):
     cls.r1 = 'running(c1,1)'
     cls.r2 = 'running(c2,1)'
     cls.r3 = 'running(c3,1)'
     cls.lp1 = Literal.positive(cls.r1)
     cls.ln1 = Literal.negative(cls.r1)
     cls.lp2 = Literal.positive(cls.r2)
     cls.ln2 = Literal.negative(cls.r2)
     cls.lp3 = Literal.positive(cls.r3)
     cls.ln3 = Literal.negative(cls.r3)
Exemplo n.º 3
0
def p_literal(p):
    '''literal : LPAREN NOT_KEY predicate RPAREN
               | predicate'''
    if len(p) == 2:
        p[0] = Literal.positive(p[1])
    elif len(p) == 5:
        p[0] = Literal.negative(p[3])
Exemplo n.º 4
0
 def __init__(self, atoms):
     self._atoms = atoms
     self._terms = []
     self._weights = {}
     self.__index = {}
     for atom in self._atoms:
         self.__index[Literal.positive(atom)] = set()
         self.__index[Literal.negative(atom)] = set()
Exemplo n.º 5
0
    def test_combine(self):
        parser = Parser()

        transition_model = '''
            1.000::running(c1, 1) :- running(c1, 0).
        '''
        atoms1, rules1 = parser.parse(transition_model)
        wdnf1 = WeightedDNF(set(atoms1.keys()))
        for index, rule in enumerate(rules1):
            pos_term = tuple(
                sorted([Literal.positive(rule.head)] + list(rule.body)))
            wdnf1.add_term(pos_term, rule.probability)
            neg_term = tuple(
                sorted([Literal.negative(rule.head)] + list(rule.body)))
            wdnf1.add_term(neg_term, 1 - rule.probability)

        value_model = '''
            V(0) :- not(running(c1, 1)), not(running(c2, 1)), not(running(c3, 1)).
            V(1) :- running(c1, 1),      not(running(c2, 1)), not(running(c3, 1)).
            V(1) :- not(running(c1, 1)), running(c2, 1),      not(running(c3, 1)).
            V(1) :- not(running(c1, 1)), not(running(c2, 1)), running(c3, 1).
            V(2) :- running(c1, 1),      running(c2, 1),      not(running(c3, 1)).
            V(2) :- running(c1, 1),      not(running(c2, 1)), running(c3, 1).
            V(2) :- not(running(c1, 1)), running(c2, 1),      running(c3, 1).
            V(3) :- running(c1, 1),      running(c2, 1),      running(c3, 1).
        '''
        atoms2, rules2 = parser.parse(value_model)
        wdnf2 = WeightedDNF(set(atoms2.keys()))
        for index, rule in enumerate(rules2):
            wdnf2.add_term(sorted(rule.body), float(rule.head[2:-1]))

        prod = combine(wdnf1, wdnf2, float.__mul__)
        self.assertEqual(len(prod), len(wdnf2))
        pos = Literal.positive('running(c1,1)')
        neg = Literal.negative('running(c1,1)')
        r1 = Literal.positive('running(c1,0)')
        for weight, term in prod:
            self.assertEqual(len(term), 4)
            if neg in term:
                self.assertEqual(weight, 0.0)
            if pos in term:
                count = sum([
                    literal.is_positive() for literal in term if literal != r1
                ])
                self.assertEqual(weight, float(count))
Exemplo n.º 6
0
 def __update_index(self, term, index):
     term = set(term)
     for atom in self._atoms:
         positive_literal = Literal.positive(atom)
         negative_literal = Literal.negative(atom)
         if positive_literal in term:
             self.__index[positive_literal].add(index)
             continue
         if negative_literal in term:
             self.__index[negative_literal].add(index)
             continue
         self.__index[positive_literal].add(index)
         self.__index[negative_literal].add(index)
Exemplo n.º 7
0
    def test_add_term(self):
        # value function
        wdnf1 = wdnf.WeightedDNF(self.atoms1)
        self.assertEqual(len(wdnf1), 0)
        for index, rule in enumerate(self.rules1):
            wdnf1.add_term(rule.body, int(rule.head[2:-1]))
            self.assertEqual(len(wdnf1), index + 1)

        fluents = ['running(c1,1)', 'running(c2,1)', 'running(c3,1)']
        for fluent in fluents:
            pos = Literal.positive(fluent)
            neg = Literal.negative(fluent)
            t1 = set(wdnf1.terms_by_literals([pos]))
            t2 = set(wdnf1.terms_by_literals([neg]))
            self.assertEqual(len(t1), len(wdnf1) / 2)
            self.assertEqual(len(t2), len(wdnf1) / 2)
            self.assertEqual(t1 & t2, set())
            self.assertEqual(t1 | t2, set(wdnf1.terms))

        values = [0, 1, 2, 3]
        terms_sets = [set(wdnf1.terms_by_weight(v)) for v in values]
        self.assertEqual(sum([len(s) for s in terms_sets]), len(wdnf1))
        for i in range(len(terms_sets[-1])):
            for j in range(i + 1, len(terms_sets)):
                self.assertEqual(terms_sets[i] & terms_sets[j], set())

        # transition function
        wdnf2 = wdnf.WeightedDNF(self.atoms2)
        self.assertEqual(len(wdnf2), 0)
        for index, rule in enumerate(self.rules2):
            pos_term = tuple([Literal.positive(rule.head)] + list(rule.body))
            wdnf2.add_term(pos_term, rule.probability)
            neg_term = tuple([Literal.negative(rule.head)] + list(rule.body))
            wdnf2.add_term(neg_term, 1 - rule.probability)
        self.assertEqual(len(wdnf2), 2 * len(self.rules2))

        next_state_fluents = [
            'running(c1,1)', 'running(c2,1)', 'running(c3,1)'
        ]
        for fluent in next_state_fluents:
            pos = Literal.positive(fluent)
            neg = Literal.negative(fluent)
            t1 = set(wdnf2.terms_by_literals([pos]))
            t2 = set(wdnf2.terms_by_literals([neg]))
            self.assertEqual(len(t1), len(t2))

            inter = set(term for _, term in t1 & t2)
            self.assertTrue(pos not in inter)
            self.assertTrue(neg not in inter)

        actions = ['reboot(c1)', 'reboot(c2)', 'reboot(c3)']
        for action in actions:
            pos = Literal.positive(action)
            neg = Literal.negative(action)
            t1 = set(wdnf2.terms_by_literals([pos]))
            t2 = set(wdnf2.terms_by_literals([neg]))
            inter = set(term for _, term in t1 & t2)
            self.assertTrue(pos not in inter)
            self.assertTrue(neg not in inter)

            if action == actions[0]:
                self.assertEqual(len(t1), len(wdnf2) - 6)
                self.assertEqual(len(t2), len(wdnf2) - 2)

            if action == actions[2]:
                self.assertEqual(len(t1), len(wdnf2) - 6)
                self.assertEqual(len(t2), len(wdnf2) - 2)