Exemplo n.º 1
0
def fit_curve(ps_list):
    #--input:ps_list, (x,y)
    x = np.array([r[0] for r in ps_list])
    y = np.array([r[1] for r in ps_list])

    mod = GaussianModel()

    pars = mod.guess(y, x=x)
    bestresult = mod.fit(y, pars, x=x)

    return (bestresult.best_fit,x,y,getfloat_attr(bestresult, 'chisqr'),bestresult)
Exemplo n.º 2
0
def test_getfloat_attr(params, par, attr, expected):
    """Test getfloat_attr function."""
    if par == 'aa1':
        # add an attribute that is not None, float, or int
        # This will never occur for Parameter values, but this function is
        # also used on the MinimizerResult/ModelResult where it could happen.
        params['aa1'].test = 20 + 5j

    output = getfloat_attr(params[par], attr)
    assert output == expected

    if par == 'a':
        assert len(output) == 10  # leading blank for pos values is stripped
    elif par == 'b':
        assert len(output) == 11
    elif par == 'c1':
        assert len(output) == 1
Exemplo n.º 3
0
def export_modelresult(result, filename='fitresult.xdi',
                       datafile=None, ydata=None, yerr=None,
                       _larch=None, **kwargs):
    """
    export an lmfit ModelResult to an XDI data file

    Arguments
    ---------
     result       ModelResult, required
     filename     name of output file ['fitresult.xdi']
     datafile     name of data file [`None`]
     ydata        data array used for fit [`None`]
     yerr         data error array used for fit [`None`]

    Notes
    -----
    keyword arguments should include independent variables

    Example
    -------
        result = model.fit(ydata, params, x=x)
        export_modelresult(result, 'fitresult_1.xdi', x=x,
                           datafile='XYData.txt')
    """
    if not isinstance(result, ModelResult):
        raise ValueError("export_fit needs a lmfit ModelReult")

    header = ["XDI/1.1  Lmfit Result File"]
    hadd = header.append
    if datafile is not None:
        hadd(" Datafile.name:  %s " % datafile)
    else:
        hadd(" Datafile.name: <unknnown>")

    ndata = len(result.best_fit)
    columns = OrderedDict()
    for aname in result.model.independent_vars:
        val = kwargs.get(aname, None)
        if val is not None and len(val) == ndata:
            columns[aname] = val

    if ydata is not None:
        columns['ydata'] = ydata

    if yerr is not None:
        columns['yerr'] = yerr

    columns['best_fit'] = result.best_fit
    columns['init_fit'] = result.init_fit

    delta_fit = result.eval_uncertainty(result.params, **kwargs)

    columns['delta_fit'] = delta_fit
    if len(result.model.components) > 1:
        comps = result.eval_components(result.params, **kwargs)
        for name, val in comps.items():
            columns[name] = val

    clabel = []
    for i, cname in enumerate(columns):
        hadd(" Column.%i:  %s" % (i+1, cname))
        clabel.append('%15s ' % cname)

    hadd("Fit.Statistics: Start here")
    hadd(" Fit.model_name:          %s" % result.model.name)
    hadd(" Fit.method:              %s" % result.method)
    hadd(" Fit.n_function_evals:    %s" % getfloat_attr(result, 'nfev'))
    hadd(" Fit.n_data_points:       %s" % getfloat_attr(result, 'ndata'))
    hadd(" Fit.n_variables:         %s" % getfloat_attr(result, 'nvarys'))
    hadd(" Fit.chi_square:          %s" % getfloat_attr(result, 'chisqr', length=11))
    hadd(" Fit.reduced_chi_square:  %s" % getfloat_attr(result, 'redchi', length=11))
    hadd(" Fit.akaike_info_crit:    %s" % getfloat_attr(result, 'aic', length=11))
    hadd(" Fit.bayesian_info_crit:  %s" % getfloat_attr(result, 'bic', length=11))

    hadd("Param.Statistics: Start here")
    namelen = max([len(p) for p in result.params])
    for name, par in result.params.items():
        space = ' '*(namelen+1-len(name))
        nout = "Param.%s:%s" % (name, space)
        inval = '(init= ?)'
        if par.init_value is not None:
            inval = '(init=% .7g)' % par.init_value

        try:
            sval = gformat(par.value)
        except (TypeError, ValueError):
            sval = 'Non Numeric Value?'
        if par.stderr is not None:
            serr = gformat(par.stderr, length=9)
            sval = '%s +/-%s' % (sval, serr)

        if par.vary:
            bounds = "[%s: %s]" % (gformat(par.min), gformat(par.max))
            hadd(" %s %s %s %s" % (nout, sval, bounds, inval))
        elif par.expr is not None:
            hadd(" %s %s  == '%s'" % (nout, sval, par.expr))
        else:
            hadd(" %s % .7g (fixed)" % (nout, par.value))

    hadd("////////  Fit Report ////////")
    for r in result.fit_report().split('\n'):
        hadd("   %s" % r)
    hadd("-" * 77)
    hadd("".join(clabel)[1:])
    header[0] = "XDI/1.1  Lmfit Result File  %i header lines" % (len(header))
    dtable = []
    for key, dat in columns.items():
        dtable.append(dat)

    dtable = np.array(dtable).transpose()
    datatable = []
    for i in range(ndata):
        col = dtable[i, :]*1.0
        row = []
        for cval in col:
            try:
                val = gformat(cval, length=15)
            except:
                val = repr(cval)
            row.append(val)
        datatable.append(" ".join(row))

    datatable.append('')
    with open(filename, 'w') as fh:
        fh.write("\n".join(['#%s' % s for s in header]))
        fh.write("\n")
        fh.write("\n".join(datatable))
Exemplo n.º 4
0
def export_modelresult(result, filename='fitresult.xdi',
                       datafile=None, ydata=None, yerr=None,
                       _larch=None, **kwargs):
    """
    export an lmfit ModelResult to an XDI data file

    Arguments
    ---------
     result       ModelResult, required
     filename     name of output file ['fitresult.xdi']
     datafile     name of data file [`None`]
     ydata        data array used for fit [`None`]
     yerr         data error array used for fit [`None`]

    Notes
    -----
    keyword arguments should include independent variables

    Example
    -------
        result = model.fit(ydata, params, x=x)
        export_modelresult(result, 'fitresult_1.xdi', x=x,
                           datafile='XYData.txt')
    """
    if not isinstance(result, ModelResult):
        raise ValueError("export_fit needs a lmfit ModelReult")

    header = ["XDI/1.1  Lmfit Result File"]
    hadd = header.append
    if datafile is not None:
        hadd(" Datafile.name:  %s " % datafile)
    else:
        hadd(" Datafile.name: <unknnown>")

    ndata = len(result.best_fit)
    columns = OrderedDict()
    for aname in result.model.independent_vars:
        val = kwargs.get(aname, None)
        if val is not None and len(val) == ndata:
            columns[aname] = val

    if ydata is not None:
        columns['ydata'] = ydata

    if yerr is not None:
        columns['yerr'] = yerr

    columns['best_fit'] = result.best_fit
    columns['init_fit'] = result.init_fit
    delta_fit = 0.0*result.best_fit
    if not any([p.stderr is None for p in result.params.values()]):
        delta_fit = result.eval_uncertainty(result.params, **kwargs)

    columns['delta_fit'] = delta_fit
    if len(result.model.components) > 1:
        comps = result.eval_components(result.params, **kwargs)
        for name, val in comps.items():
            columns[name] = val

    clabel = []
    for i, cname in enumerate(columns):
        hadd(" Column.%i:  %s" % (i+1, cname))
        clabel.append('%15s ' % cname)

    hadd("Fit.Statistics: Start here")
    hadd(" Fit.model_name:          %s" % result.model.name)
    hadd(" Fit.method:              %s" % result.method)
    hadd(" Fit.n_function_evals:    %s" % getfloat_attr(result, 'nfev'))
    hadd(" Fit.n_data_points:       %s" % getfloat_attr(result, 'ndata'))
    hadd(" Fit.n_variables:         %s" % getfloat_attr(result, 'nvarys'))
    hadd(" Fit.chi_square:          %s" % getfloat_attr(result, 'chisqr', length=11))
    hadd(" Fit.reduced_chi_square:  %s" % getfloat_attr(result, 'redchi', length=11))
    hadd(" Fit.akaike_info_crit:    %s" % getfloat_attr(result, 'aic', length=11))
    hadd(" Fit.bayesian_info_crit:  %s" % getfloat_attr(result, 'bic', length=11))

    hadd("Param.Statistics: Start here")
    namelen = max([len(p) for p in result.params])
    for name, par in result.params.items():
        space = ' '*(namelen+1-len(name))
        nout = "Param.%s:%s" % (name, space)
        inval = '(init= ?)'
        if par.init_value is not None:
            inval = '(init=% .7g)' % par.init_value

        try:
            sval = gformat(par.value)
        except (TypeError, ValueError):
            sval = 'Non Numeric Value?'
        if par.stderr is not None:
            serr = gformat(par.stderr, length=9)
            sval = '%s +/-%s' % (sval, serr)

        if par.vary:
            bounds = "[%s: %s]" % (gformat(par.min), gformat(par.max))
            hadd(" %s %s %s %s" % (nout, sval, bounds, inval))
        elif par.expr is not None:
            hadd(" %s %s  == '%s'" % (nout, sval, par.expr))
        else:
            hadd(" %s % .7g (fixed)" % (nout, par.value))

    hadd("////////  Fit Report ////////")
    for r in result.fit_report().split('\n'):
        hadd("   %s" % r)
    hadd("-" * 77)
    hadd("".join(clabel)[1:])
    header[0] = "XDI/1.1  Lmfit Result File  %i header lines" % (len(header))
    dtable = []
    for key, dat in columns.items():
        dtable.append(dat)

    dtable = np.array(dtable).transpose()
    datatable = []
    for i in range(ndata):
        col = dtable[i, :]*1.0
        row = []
        for cval in col:
            try:
                val = gformat(cval, length=15)
            except:
                val = repr(cval)
            row.append(val)
        datatable.append(" ".join(row))

    datatable.append('')
    with open(filename, 'w') as fh:
        fh.write("\n".join(['#%s' % s for s in header]))
        fh.write("\n")
        fh.write("\n".join(datatable))