Exemplo n.º 1
0
def train(lr):
    # Load data
    print 'loading dataset...'

    train_data = TextIterator(train_datafile, n_batch=n_batch, maxlen=maxlen)
    valid_data = TextIterator(valid_datafile, n_batch=n_batch, maxlen=maxlen)
    test_data = TextIterator(test_datafile, n_batch=n_batch, maxlen=maxlen)
    print 'building model...'
    model = RNNLM(n_input, n_hidden, vocabulary_size, rnn_cell, optimizer, p,
                  bptt)
    print 'training start...'
    start = time.time()
    idx = 0
    error = []
    n_words = 0
    for epoch in xrange(NEPOCH):
        in_start = time.time()
        for x, x_mask, y, y_mask in train_data:
            idx += 1
            beg_time = time.time()
            #print x.shape
            #print y.shape
            cost, batch_nll = model.train(x, x_mask, y, y_mask, lr)
            error.append(batch_nll)
            n_words += np.sum(y_mask)
            if np.isnan(cost) or np.isinf(cost):
                print 'NaN Or Inf detected!'
                return -1
            if idx % disp_freq == 0:
                error = np.asarray(error).flatten()
                logger.info('epoch: %d idx: %d cost: %f ppl: %f' %
                            (epoch, idx, np.sum(error) / n_words,
                             np.exp(np.sum(error) / n_words)))
                error = []
                n_words = 0
            if idx % save_freq == 0:
                filename = './model/param_{}_bptt{}_{:.2f}.pkl'.format(
                    rnn_cell, bptt, (time.time() - start))
                logger.info('dumping...' + filename)
                save_model(filename, model)
            if idx % valid_freq == 0:
                logger.info('validing...')
                valid_cost = evaluate_ppl(valid_data, model)
                logger.info('validation cost: %f perplexity: %f' %
                            (valid_cost, np.exp(valid_cost)))
            if idx % test_freq == 0:
                logger.info('testing...')
                test_cost = evaluate_ppl(test_data, model)
                logger.info('test cost: %f perplexity: %f' %
                            (test_cost, np.exp(test_cost)))

    print "Finished. Time = " + str(time.time() - start)
Exemplo n.º 2
0
def test():
    test_data = TextIterator(test_datafile, n_batch=n_batch)
    valid_data = TextIterator(valid_datafile, n_batch=n_batch)
    model = RNNLM(n_input, n_hidden, vocabulary_size, rnn_cell, optimizer, p)
    if os.path.isfile(args.model_dir):
        print 'loading pretrained model:', args.model_dir
        model = load_model(args.model_dir, model)
    else:
        print args.model_dir, 'not found'
    mean_cost = evaluate(valid_data, model)
    print 'valid cost:', mean_cost, 'perplexity:', np.exp(
        mean_cost)  #,"word_error_rate:",mean_wer
    mean_cost = evaluate(test_data, model)
    print 'test cost:', mean_cost, 'perplexity:', np.exp(mean_cost)
Exemplo n.º 3
0
def test():
    test_data = TextIterator(test_datafile, n_batch=n_batch)
    valid_data = TextIterator(valid_datafile, n_batch=n_batch)
    model = RNNLM(n_input, n_hidden, vocabulary_size, rnn_cell, optimizer, p)
    if os.path.isfile(args.model_dir):
        print 'loading pretrained model:', args.model_dir
        model = load_model(args.model_dir, model)
    else:
        print args.model_dir, 'not found'

    valid_cost, wer = evaluate(valid_data, model)
    logger.info('validation cost: %f perplexity: %f,word_error_rate:%f' %
                (valid_cost, np.exp(valid_cost), wer))
    test_cost, wer = evaluate(test_data, model)
    logger.info('test cost: %f perplexity: %f,word_error_rate:%f' %
                (test_cost, np.exp(test_cost), wer))
Exemplo n.º 4
0
def train(lr):
    print 'loading dataset...'
    train_data = TextIterator(train_datafile, n_batch=n_batch, maxlen=maxlen)
    valid_data = TextIterator(valid_datafile, n_batch=n_batch, maxlen=maxlen)
    test_data = TextIterator(test_datafile, n_batch=n_batch, maxlen=maxlen)
    print 'building model...'
    model = RNNLM(n_input, n_hidden, vocabulary_size, rnn_cell, optimizer, p,
                  bptt)
    if os.path.isfile(model_dir):
        print 'loading checkpoint parameters....', model_dir
        model = load_model(model_dir, model)
    if goto_line > 0:
        train_data.goto_line(goto_line)
        print 'goto line:', goto_line
    print 'training start...'
    start = time.time()
    idx = goto_line
    for epoch in xrange(NEPOCH):
        error = 0
        for x, x_mask, y, y_mask in train_data:
            idx += 1
            cost = model.train(x, x_mask, y, y_mask, lr)
            error += cost
            if np.isnan(cost) or np.isinf(cost):
                print 'NaN Or Inf detected!'
                return -1
            if idx % disp_freq == 0:
                logger.info('epoch: %d idx: %d cost: %f ppl: %f' %
                            (epoch, idx, error / disp_freq,
                             np.exp(error / (1.0 * disp_freq))))
                error = 0
            if idx % save_freq == 0:
                logger.info('dumping...')
                save_model(
                    './model/parameters_%.2f.pkl' % (time.time() - start),
                    model)
            if idx % valid_freq == 0:
                logger.info('validing...')
                valid_cost, wer = evaluate(valid_data, model)
                logger.info(
                    'validation cost: %f perplexity: %f,word_error_rate:%f' %
                    (valid_cost, np.exp(valid_cost), wer))
            if idx % test_freq == 0:
                logger.info('testing...')
                test_cost, wer = evaluate(test_data, model)
                logger.info('test cost: %f perplexity: %f,word_error_rate:%f' %
                            (test_cost, np.exp(test_cost), wer))

    print "Finished. Time = " + str(time.time() - start)