Exemplo n.º 1
0
def main():
    Ws, bs = get_params(['model_reinforcement.pickle', 'model.pickle'])
    Ws_s, bs_s = load.get_parameters(Ws=Ws, bs=bs)
    f_pred = get_predict(Ws_s, bs_s)
    f_train = get_update(Ws_s, bs_s)

    i, n, l, c = 0, 0.0, 0.0, 0.0

    base_learning_rate = 1e-2
    t0 = time.time()

    while True:
        learning_rate = base_learning_rate * math.exp(
            -(time.time() - t0) / 86400)
        r = game(f_pred, f_train, learning_rate)
        if r is None:
            continue
        i += 1
        n_t, l_t, c_t = r
        n = n * 0.999 + n_t
        l = l * 0.999 + l_t * n_t
        c = c * 0.999 + c_t * n_t
        print('%6d %9.5f %9.5f %9.5f' % (i, learning_rate, l / n, c / n))

        if i % 100 == 0:
            print('dumping model...')
            dump(Ws_s, bs_s)
Exemplo n.º 2
0
def train():
    Xc_train, Xc_test, Xr_train, Xr_test, Xp_train, Xp_test = get_data(
        ['x', 'xr', 'xp'])
    for board in [Xc_train[0], Xp_train[0]]:
        for row in range(8):
            print(' '.join('%2d' % x
                           for x in board[(row * 8):((row + 1) * 8)]))
        print

    n_in = 12 * 64

    Ws_s, bs_s = load.get_parameters(n_in=n_in, n_hidden_units=[2048] * 3)

    minibatch_size = min(MINIBATCH_SIZE, Xc_train.shape[0])

    train = get_function(Ws_s, bs_s, update=True, dropout=False)
    test = get_function(Ws_s, bs_s, update=False, dropout=False)

    best_test_loss = float('inf')
    base_learning_rate = 0.03
    t0 = time.time()

    i = 0
    while True:
        i += 1
        learning_rate = floatX(base_learning_rate *
                               math.exp(-(time.time() - t0) / 86400))

        minibatch_index = random.randint(
            0,
            int(Xc_train.shape[0] / minibatch_size) - 1)
        lo, hi = minibatch_index * minibatch_size, (minibatch_index +
                                                    1) * minibatch_size
        loss, reg, loss_a, loss_b, loss_c = train(Xc_train[lo:hi],
                                                  Xr_train[lo:hi],
                                                  Xp_train[lo:hi],
                                                  learning_rate)

        zs = [loss, loss_a, loss_b, loss_c, reg]
        print('iteration %6d learning rate %12.9f: %s' %
              (i, learning_rate, '\t'.join(['%12.9f' % z for z in zs])))

        if i % 200 == 0:
            test_loss, test_reg, _, _, _ = test(Xc_test, Xr_test, Xp_test,
                                                learning_rate)
            print('test loss %12.9f' % test_loss)

            if test_loss < best_test_loss:
                print('new record!')
                best_test_loss = test_loss

                print('dumping pickled model')

                def values(zs):
                    return [z.get_value(borrow=True) for z in zs]

                with open('cupy_model.pickle', 'wb') as f:
                    pickle.dump((values(Ws_s), values(bs_s)), f)
Exemplo n.º 3
0
def get_model_from_pickle(fn):
    f = open(fn, 'rb')
    Ws, bs = pickle.load(f, encoding='latin1')

    Ws_s, bs_s = load.get_parameters(Ws=Ws, bs=bs)
    x, p = load.get_model(Ws_s, bs_s)

    predict = theano.function(inputs=[x], outputs=p)

    return predict
Exemplo n.º 4
0
def getModel(fn):
    #gets the model from the pickle file and turns it into a function
    f = open(fn, 'rb')
    Ws, bs = pickle.load(f)

    Ws_s, bs_s = load.get_parameters(Ws=Ws, bs=bs)
    x, p = load.get_model(Ws_s, bs_s)

    predict = theano.function(inputs=[x], outputs=p)

    return predict
Exemplo n.º 5
0
def get_model_from_pickle(fn):
    f = open(fn)
    Ws, bs = pickle.load(f)
    
    Ws_s, bs_s = load.get_parameters(Ws=Ws, bs=bs)
    x, p = load.get_model(Ws_s, bs_s)
    
    predict = theano.function(
        inputs=[x],
        outputs=p)

    return predict
Exemplo n.º 6
0
def train():
    Xc_train, Xc_test, Xr_train, Xr_test, Xp_train, Xp_test = get_data(['x', 'xr', 'xp'])
    for board in [Xc_train[0], Xp_train[0]]:
        for row in xrange(8):
            print ' '.join('%2d' % x for x in board[(row*8):((row+1)*8)])
        print

    n_in = 12 * 64

    Ws_s, bs_s = load.get_parameters(n_in=n_in, n_hidden_units=[2048] * 3)
    
    minibatch_size = min(MINIBATCH_SIZE, Xc_train.shape[0])

    train = get_function(Ws_s, bs_s, update=True, dropout=False)
    test = get_function(Ws_s, bs_s, update=False, dropout=False)

    best_test_loss = float('inf')
    base_learning_rate = 0.03
    t0 = time.time()
    
    i = 0
    while True:
        i += 1
        learning_rate = floatX(base_learning_rate * math.exp(-(time.time() - t0) / 86400))

        minibatch_index = random.randint(0, int(Xc_train.shape[0] / minibatch_size) - 1)
        lo, hi = minibatch_index * minibatch_size, (minibatch_index + 1) * minibatch_size
        loss, reg, loss_a, loss_b, loss_c = train(Xc_train[lo:hi], Xr_train[lo:hi], Xp_train[lo:hi], learning_rate)

        zs = [loss, loss_a, loss_b, loss_c, reg]
        print 'iteration %6d learning rate %12.9f: %s' % (i, learning_rate, '\t'.join(['%12.9f' % z for z in zs]))

        if i % 200 == 0:
            test_loss, test_reg, _, _, _ = test(Xc_test, Xr_test, Xp_test, learning_rate)
            print 'test loss %12.9f' % test_loss

            if test_loss < best_test_loss:
                print 'new record!'
                best_test_loss = test_loss

                print 'dumping pickled model'
                f = open('model.pickle', 'w')
                def values(zs):
                    return [z.get_value(borrow=True) for z in zs]
                pickle.dump((values(Ws_s), values(bs_s)), f)
                f.close()
Exemplo n.º 7
0
def get_model_from_pickle(fn):
    """
    Loads and returns model from pickled file which stores weights and biases.
    :param fn: filename
    :return: the theano function object representing the model.
    """

    f = open(fn, 'rb')

    # load weights Ws and biases bs.
    # Ws is a list of 3 nd arrays.
    # 1st nd-array: 768 x 2048 (weights for input to first hidden layer)
    # 2nd nd-array: 2048 x 2048
    # 3rd nd-array: 2048-dimensional vector to provide single output value.
    Ws, bs = pickle.load(f, encoding='bytes')
    Ws_s, bs_s = load.get_parameters(Ws=Ws, bs=bs)
    x, p = load.get_model(Ws_s, bs_s)

    # predict is a function object, computing outputs from inputs (based on
    # the function defined in load.py's get_model function.
    predict = theano.function(inputs=[x], outputs=p)

    return predict
Exemplo n.º 8
0
def train():
    #Get test and train data for each paramter of
    #parent, observed and random moves
    Xc_train, Xc_test, Xr_train, Xr_test, Xp_train, Xp_test = get_data(
        ['x', 'xr', 'xp'])

    #Print the board representation to be passed in
    for board in [Xc_train[0], Xp_train[0]]:
        for row in range(8):
            print(' '.join('%2d' % x
                           for x in board[(row * 8):((row + 1) * 8)]))
        print("\n")

    n_in = 12 * 64

    #Get the parmeters for training
    Ws_s, bs_s = load.get_parameters(n_in=n_in, n_hidden_units=[2048] * 3)
    minibatch_size = min(MINIBATCH_SIZE, Xc_train.shape[0])

    #Get the training and test sets
    train = get_function(Ws_s, bs_s, update=True, dropout=False)
    test = get_function(Ws_s, bs_s, update=False, dropout=False)

    #Set initail values for
    #test loss and the base learning rate and number of iterations
    best_test_loss = float('inf')
    base_learning_rate = 0.03
    t0 = time.time()

    i = 0
    #Train loop
    while True:
        i += 1
        #calculate the learning rate
        learning_rate = floatX(base_learning_rate *
                               math.exp(-(time.time() - t0) / 86400))
        #calculate the training loss
        minibatch_index = random.randint(
            0,
            int(Xc_train.shape[0] / minibatch_size) - 1)
        lo, hi = minibatch_index * minibatch_size, (minibatch_index +
                                                    1) * minibatch_size
        loss, reg, loss_a, loss_b, loss_c = train(Xc_train[lo:hi],
                                                  Xr_train[lo:hi],
                                                  Xp_train[lo:hi],
                                                  learning_rate)
        zs = [loss, loss_a, loss_b, loss_c, reg]
        #Print the learning rate and current loss
        print("iteration %6d learning rate %12.9f: %s" %
              (i, learning_rate, '\t'.join(["%12.9f" % z for z in zs])))
        #every 200 iterations check if the test loss is better than the best loss recorded
        if i % 200 == 0:
            test_loss, test_reg, _, _, _ = test(Xc_test, Xr_test, Xp_test,
                                                learning_rate)
            #Print he test loss
            print("test loss %12.9f" % test_loss)
            #if test loss is better than the best loss then dump model parameters to model.pickle
            if test_loss < best_test_loss:
                print("new record!")
                best_test_loss = test_loss

                print("dumping pickled model")
                f = open('model.pickle', 'wb')

                def values(zs):
                    return [z.get_value(borrow=True) for z in zs]

                pickle.dump((values(Ws_s), values(bs_s)), f)
                f.close()
Exemplo n.º 9
0
def training():
    global train, test
    Xc_train, Xc_test, Xp_train, Xp_test, Xd_train, Xd_test, Xa_train, Xa_test = get_data(
        ['x', 'xp', 'xd', 'xa'])
    Xc_train = [x.flatten() for x in Xc_train]
    Xc_test = [x.flatten() for x in Xc_test]
    Xp_train = [x.flatten() for x in Xp_train]
    Xp_test = [x.flatten() for x in Xp_test]
    n_in = 12 * 64
    Xtrain = [
        x for x in numpy.concatenate(Xc_train),
        numpy.concatenate(Xp_train),
        Xd_train.flatten(),
        Xa_train.flatten()
    ]
    Xtest = [
        x for x in numpy.concatenate(Xc_test),
        numpy.concatenate(Xp_test),
        Xd_test.flatten(),
        Xa_test.flatten()
    ]
    Ws_s, bs_s = load.get_parameters(n_in=n_in, n_hidden_units=[2048] * 3)

    minibatch_size = min(MINIBATCH_SIZE, len(Xp_train))

    train = get_function(Ws_s, bs_s, update=True, dropout=False)
    test = get_function(Ws_s, bs_s, update=False, dropout=False)
    best_test_loss = float('inf')
    base_learning_rate = 0.03
    t0 = time.time()
    i = 0
    while True:
        i += 1
        learning_rate = floatX(base_learning_rate *
                               math.exp(-(time.time() - t0) / 86400))

        print learning_rate
        minibatch_index = random.randint(
            0,
            int(len(Xp_train) / minibatch_size) - 1)
        print minibatch_index

        lo, hi = minibatch_index * minibatch_size, (minibatch_index +
                                                    1) * minibatch_size
        print lo, hi

        loss, reg, loss_a, loss_b, loss_c = train(Xc_train[lo:hi],
                                                  Xp_train[lo:hi],
                                                  Xd_train[lo:hi],
                                                  Xa_train[lo:hi],
                                                  learning_rate)
        print loss

        zs = [loss, loss_a, loss_b, loss_c, reg]
        print 'iteration %6d learning rate %12.9f: %s' % (
            i, learning_rate, '\t'.join(['%12.9f' % z for z in zs]))

        if i % 200 == 0:
            test_loss, test_reg, _, _, _ = test(Xc_test, Xr_test, Xp_test,
                                                learning_rate)
            print 'test loss %12.9f' % test_loss

            if test_loss < best_test_loss:
                print 'new record!'
                best_test_loss = test_loss

                print 'dumping pickled model'
                f = open('model.pickle', 'w')

                def values(zs):
                    return [z.get_value(borrow=True) for z in zs]

                pickle.dump((values(Ws_s), values(bs_s)), f)
                f.close()